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Abstract 
Recent progress in AI has culminated in foundation models (FMs) that can facilitate the development 
of innovative approaches for nuclear verification and geographic profiling of activities of interest. 
FMs are large-scale deep learning neural network models (e.g., transformer models) that are trained 
on very large general datasets and can then be tuned to a wide range of downstream tasks with 
relatively little additional task-specific training. FMs have already demonstrated a huge impact in 
natural language processing and are increasingly used in computer vision for tasks such as image-to-
text mapping, image retrieval, and image tagging. However, while FMs are powerful models, their 
adaptation to the domain of nuclear nonproliferation comes with potential limitations due to 
inadequate quality and variety of data, as well as a possibility of bias in the data used to train the 
original FM. Test & evaluation (T&E) of FMs, including quantification of uncertainty,  is crucial for 
nonproliferation applications, where there are unique challenges such as unavailability of all the 
modalities all the time, unequal distribution of information across modalities, and unequal distribution 
of annotated data across different modalities.  
 
The paper will present an overview of T&E approaches for FMs, and issues such as computational 
complexity, scalability and deployability. The paper will also discuss T&E of FMs for computer 
vision to solve downstream tasks such as land-use, scene and image classification, object detection, 
localization, and segmentation, which are essential for the characterization of objects and activities 
of interest. Finally, we will consider an application of transformer models to scene classification using 
satellite imagery and compare transformers to convolutional neural networks using T&E metrics.  
 
1 Introduction 
More of the world is currently under surveillance than at any other time in history, due to open source 
and commercial high-resolution satellite and aerial surveillance, which can include visible 
wavelengths, multispectral or hyperspectral sensors. Textual data and time series data of various 
modalities, e.g., seismic and radio-frequency signals, is also being recorded at an enormous rate. This 
provides new opportunities for global transparency and innovative approaches to treaty verification. 
Recent progress in deep learning led to the development of foundation models (FMs), e.g., 
transformer models, and created a basis to potentially address some data deluge challenges [1].  

FMs models are first trained on massive amounts of broad data to learn generic features that can be 
used for various downstream tasks. Once trained, they can be adapted for specific tasks using smaller 
task-specific datasets. FMs were initially developed within the context of natural language processing 
(NLP) tasks and achieved remarkable performance on a wide range of NLP tasks, including language 
translation, sentiment analysis, text classification, and question answering. Recently, FMs have been 
broadened to computer vision tasks, such as visual question answering and object detection. For 
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example, Vision Transformer (ViT) is a FM used for computer vision tasks [2]. Similar to FMs used 
for NLP tasks, FMs for computer vision tasks are pre-trained on large datasets, e.g., ground-based 
ImageNet imagery [3], and fine-tuned on task-specific data, e.g., satellite imagery [4].  
 
The field of FMs is rapidly evolving, e.g., a new FM for NLP is released by industry nearly weekly 
and they have been extended to multi-modal data, such as images and text, video, audio and text [5]. 
However, FMs also face some challenges. A prodigous computational requirement is one of them. 
FMs, in particular language FMs, tend to have many more parameters than convolutional neural 
networks (CNNs). For example, the GPT-3 model developed by OpenAI has 175 billion parameters 
[6], and Switch Transformer developed by Google has 1.6 trillion parameters [7]. This limits their 
scalability and makes it difficult to deploy such models on resource-constrained devices. 
 
Many accuracy-based metrics, such as classification accuracy and F1-score, are used to quantify 
performance of FMs in applications. However, while accuracy-based metrics are important, 
uncertainty quantification (UQ) in the model’s predictions and model calibration are equally 
important. UQ and model calibration should be an integral part of a decision-making process, 
especially in high consequence real-world applications. 

UQ and model calibration are related, but not identical. UQ refers to the process of estimating the 
level of uncertainty in a model's predictions. This can include both aleatoric or data uncertainty, and 
epistemic uncertainty, which arises from the model's lack of knowledge or understanding of the true 
data generating mechanism. Model calibration, on the other hand, refers to the process of ensuring 
that a model's predicted probabilities align with the true probabilities of the predicted events. A well-
calibrated model will assign probabilities that reflect the true likelihood of the events occurring. 

UQ and model calibration are related in the sense that a well-calibrated model will typically have 
more accurate uncertainty estimates. In other words, a model that is poorly calibrated may 
overestimate or underestimate the uncertainty in its predictions, which can lead to incorrect decisions 
in nonproliferation applications where uncertainty plays a critical role. Therefore, it is important to 
both calibrate a model and quantify its uncertainty in order to ensure accurate and reliable predictions. 
 
In this paper, we review methods for T&E of FMs and perform a case study of T&E of ten deep 
learning models, including CNNs and transformer models, applied to the task of image scene 
classification using satellite and aerial imagery. We target post-hoc evaluation of FMs, i.e., the 
evaluation of trained “black-box” models, when an end user does not have access to the internals of 
the model yet needs to know if the model is well-calibrated. The paper continues by reviewing, in 
Section 2, UQ approaches and metrics used for T&E of FMs, their constraints, and open problems. 
Section 3 summarizes computer vision tasks that are of interest for nonproliferation applications. 
Section 4 presents results of our case study. Finally, conclusions and directions for future work are 
presented in Section 5. While our experiments are done in the imaging domain, our results are 
generalizable and can be applicable to other data modalities.  
 
2 Uncertainty Quantification and Calibration of Foundation Models 
Our goal is to develop a T&E framework of FMs for nonproliferation applications. As we work 
towards our goal, in this section, we examine and summarize approaches that can be used for a variety 
of T&E tasks, as well as open problems in T&E of FMs. Broadly, UQ methods can be categorized 



into two groups: (1) intrinsic, when there is an access to the model’s internal structure (e.g., model’s 
nodes and internode weights), and (2) extrinsic, when there is no or limited access to the model’s 
internals, e.g., a pre-trained “black-box” model. 
 
(1) For intrinsic UQ, popular approaches in the machine learning community include: 

 
− Ensemble methods: Ensemble methods [e.g., 8] involve training multiple models with different 

initializations and/or architectures and combining their predictions, e.g., by taking the average or 
maximum prediction across all models. Variance in predictions across the ensemble can be used 
as a measure of model uncertainty. Compared to combining models of the same type, combining 
structurally different models (e.g., CNNs and transformers) can provide a more robust prediction 
and an estimate of the uncertainty in the prediction. The choice of models to ensemble, the number 
of models in the ensemble, and the method of combining predictions impacts the performance 
and confidence of the ensemble model and required computational resources. 

 
− Bayesian Deep Learning (BDL): BDL, including Bayesian neural networks, is a probabilistic 

approach that incorporates uncertainty into deep learning models [9, 10]. This approach involves 
placing a prior distribution over the parameters of the neural network, such as internode 
connection weights and node biases, which can be updated to a posterior distribution via 
approximate Bayesian inference. The resulting posterior distribution can be used to quantify the 
uncertainty in the model's predictions. BDL encompasses a variety of methods for inferring 
posterior distribution, including variational inference [11, 12], drop-out variational inference [13, 
14], sampling approaches [15-17], approximate inference based on Stochastic Weight Averaging 
Gaussian [18, 19], and Laplace approximations [20, 21]. Among drop-out techniques, the Monte 
Carlo dropout [13] is often used.  Instead of only dropping out neural network units during 
training, dropout is also applied at test time, and multiple predictions are made for a given input, 
which can be used to calculate the variance and uncertainty. Bayesian methods can also be 
combined with ensembles, e.g., Bayesian nonparametric ensemble [22]. The computational cost 
of BDL depends on the specific inference technique used, complexity of the model, availability 
of hardware accelerators, and the amount of data being used. 
 

(2) For extrinsic UQ, the commonly used methods include: 
 

− Data augmentation (DA): DA involves applying different transformations to the input data during 
inference and averaging the predictions across the different transformations [23]. We can use DA 
both at training and test times. The last is known as test-time data augmentation [24, 25], and can 
be used for post-hoc model’s evaluation and improvement. DA helps to estimate the uncertainty 
in the model's predictions by measuring the variability across the different predictions. 

 
− Sensitivity analysis (SA): SA is related to DA methods and involves adding noise or perturbations 

to the input data and measuring the impact on the model's predictions and calibration [26, 27]. SA 
can be used to identify which features have the most impact on the model's prediction [28]. By 
permuting the values of each feature and measuring the change in the prediction, the importance 
of each feature can be estimated.  
 



− Prediction Intervals: Prediction intervals can provide a range of values that is likely to contain 
the true value of the prediction. Common approaches are drop-out and bootstrapping. 
Bootstrapping is a resampling technique that can be used to estimate model uncertainty or assess 
the stability of a statistical estimate by creating multiple datasets through random sampling with 
replacement from the original dataset. Bootstrapping can be used for both the train and test 
datasets, depending on the specific application and the question being investigated.  
 
Estimation of prediction intervals can be combined with data augmentation [29, 30]. By making 
predictions on each of augmented versions of the input data and then computing the variance of 
the predictions, it is possible to estimate prediction intervals associated with the model's 
predictions. It is important to note that the choice of data augmentation techniques can have an 
impact on the estimated prediction intervals.  

 
− Evaluation of the model’s calibration: For a well-calibrated model, the predicted probabilities 

reflect the true probabilities of the events being predicted. Expected calibration error (ECE) [31, 
32] and Brier score [35, 36] are metrics for evaluating the calibration of machine learning models. 
They are not techniques for calibration themselves. Instead, they are used to assess the accuracy 
of the predicted probabilities and to identify potential issues with the calibration of the model. 

 
The ECE is a scalar metric that measures the difference between the predicted probabilities and 
the actual frequencies of the events being predicted:  
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where 𝑐𝑐𝑏𝑏 is the number of probabilities in bin b of the histogram B and N is the size of the dataset,  
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𝑦𝑦�𝑖𝑖 is obtained from the highest probability and �̂�𝑝𝑖𝑖 is the highest probability. Model predictions are 
partitioned into separate bins bi (Fig. 1) based on their associated confidence scores.  
 
ECE is closely related to reliability diagrams that represent model calibration by plotting accuracy 
as a function of confidence (Fig.1) [32, 33]. Reliability diagrams can be helpful for interpreting 
the ECE and identifying patterns in the model's predictions. ECE is a summary statistic that 
quantifies the calibration error across all the bins of the reliability diagram. 
 
Both ECE and reliability diagrams are sensitive to the choice of binning. While there are several 
approaches that try to address the binning choice, such as adaptive calibration error [34] and 
kernel density estimator, the choice of binning remains an open problem. The other challenge is 
that all the metrics can be affected by class imbalance. 

 

 
Figure 1. Reliability diagram. A well calibrated model is 
represented by the diagonal line. Deviation from the diagonal 
indicates model’s miscalibration, such as under-confidence 
(points above the diagonal) or over-confidence (points below 
the diagonal) in model’s predictions. 



The Brier Score (BS) measures the mean squared error between the predicted probabilities and 
the true labels. For multi-class predictions: 

𝐵𝐵𝐵𝐵 =  1
𝑁𝑁
∑ ∑ (𝑍𝑍𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑖𝑖)2𝐾𝐾
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where K is the number of classes, 𝑍𝑍𝑖𝑖𝑖𝑖 = {0,1} is the indicator variable of class k for observation 
i, 𝑝𝑝𝑖𝑖𝑖𝑖 is the predicted probability of observation i to belong to class k. The lower the Brier score 
the better. 

 
− Confidence calibration: It is essential to evaluate the model’s calibration, as poorly calibrated 

models can lead to incorrect decisions. Confidence calibration techniques include temperature 
scaling, isotonic regression, ensemble calibration, and Bayesian calibration [e.g., 32, 37]. 

 
Confidence calibration is challenging. The open problems include: (1) calibration of the model 
under data shift, when the statistical properties of the training data and the test data differ, (2) 
time-varying calibration, when the underlying distribution of the data changes over time, (3) 
dealing with high-dimensional data, and (4) multi-class calibration. 

 
3 Computer Vision Tasks 
As our case study is in the image domain, in this section, we outline computer vision tasks of interest 
for nonproliferation applications and order them based on the complexity of the analysis they require. 
 
Image classification is an assignment of an image to a certain class or category, such as identifying 
whether an image contains a nuclear or coal-fired power plant (Figs. 2&3). Localization goes a step  
 

 

Figure 2. Example of image 
classification (whether the image 
contains a nuclear power plant or 
not) and object localization. 
This is an image of Nogent-sur-Seine 
nuclear power plant, France, acquired 
December 2005. 
Image credit © Google Earth. 

 

 
Figure 3. Illustration of localization, object detection and instance segmentation of different 
components of the nuclear power plant shown in Fig. 2. Red highlights cooling towers, yellow 
outlines turbines, and blue outlines reactors. Numbers represent IDs of individual instances of 
cooling towers, turbines, and reactor buildings. Image credit © Google Earth. 



further by not only identifying the object of interest but also drawing a bounding box around it to 
indicate its location in the image. Object detection is more complex as it requires localizing multiple 
instances of different objects in an image, often with overlapping bounding boxes. By detecting each 
individual object, we can count the number of instances of each object type, such as cooling towers 
and reactor buildings. Instance segmentation goes even further by not only identifying and localizing 
objects but also segmenting each instance of an object from its surroundings, by assigning a unique 
class ID and an instance ID to each pixel in the object of interest. By segmenting each individual 
instance of an object in an image, it allows for more accurate measurements of the object's 
characteristics, such as its size, shape, and location relative to other objects in the scene. In contrast 
to the previous tasks, semantic and panoptic segmentations classify all the pixels in an image. 
Semantic segmentation labels each pixel of an image with a class ID, without differentiating between 
different instances of the same object class. Panoptic segmentation is the most complex by 
differentiating different instances and assigning instance ID to each pixel. 
 
These tasks build upon each other, with image classification providing a basic understanding of the 
content of an image, and instance and panoptic segmentations providing a detailed understanding of 
the spatial relationships between different objects in the image.  
 
4 Evaluation of the Model’s Calibration for Remote Imagery Scene Classification 
As an initial case study of T&E of FMs, we present results of the evaluation of the calibration of deep 
learning models. We consider an application of CNNs and transformer models to remote sensing 
image classification. We compare the models using conventional metrics (such as classification 
accuracy) and compare calibration estimates using expected calibration error and Brier score.  
 
For the evaluation, we use the publicly available and well-characterized Remote Sensing Image Scene 
Classification dataset (RESISC45) [4]. We evaluate ten deep learning models that were either trained 
from scratch on the RESISC45, or were pre-trained on the ImageNet1K [3] image dataset followed 
by fine-tuning on the RESISC45 [38]. RESISC45 dataset contains 31,500 images, covering 45 scene 
categories with 700 images in each category, and with spatial resolution that varies from 0.2 to 30 m 
per pixel. This dataset was collected over different locations and under different conditions and 
possesses rich variations in viewpoint, object appearance, spatial resolution, and background. The test 
dataset is a subset of RESISC45 and consists of 6,300 images with 140 images per category. Included 
in the categories are thermal power stations, storage tanks, parking lots, harbors, industrial areas, 
commercial areas, bridges, and airplanes. ImageNet1K is a benchmark in object detection and 
classification that spans 1,000 object classes and contains ~1.2 million images. The evaluated deep 
learning models include CNNs and transformers. Among the CNN models are earlier and broadly 
used models, such as AlexNet [39], VGG16 [40], ResNet50 and ResNet152 [41], DenseNet161 [42], 
and more recent models, such as EfficientNet [43], MLPMixer [44], and ConvNeXt [45]. FM-like 
transformer models are represented by Vision Transformer (ViT) [2] and Swin transformer [46]. 
 
Our results are summarized in Figs. 4 – 7. First, the results indicate that pre-training does improve 
classification performance and calibration of all the evaluated models (Figs. 4-6). Second, the 
transformers perform better than the CNN competitors when they are pre-trained and fine-tuned (Fig. 
4). The transformers also exhibit smaller Brier scores and expected calibration errors, suggesting that 
they are better calibrated than other models (Figs. 5 and 6). However, some of the CNN models, e.g., 
ResNet50, are only slightly behind in terms of accuracy, Brier score, and ECE. It is interesting to note 



 

 
Figure 4. Classification accuracy (%) of the models on the test dataset. 

Figure 5. Brier scores for the models trained from scratch and models pre-trained and fine-tuned.  

 
Figure 6. Expected calibration errors (%) for the evaluated models. 



Figure 7. Difference in the ECE estimates using 10 & 30 bins for the pre-trained & fine-tuned models. 
 
that ConvNeXt, a CNN-like model recently designed to challenge transformer models, has slightly 
lower performance than a more conventional CNN model (ResNet50). Finally, Fig. 7 demonstrates 
the ECE dependence on the choice of binning, though in our study this is not significant. 
 
5 Conclusions 
We present a review of approaches for UQ and calibration of deep learning models, as well as open 
problems facing these approaches. In the context of our case study, we outline computer vision tasks 
that are relevant to nonproliferation applications. Our results show that pre-training followed by fine-
tuning results in both improved model performance and calibration. 
 
There are a number of ways to expand our study. Next steps can include estimation of prediction 
intervals using bootstrapping, data augmentation, and sensitivity analysis or correction of model 
miscalibration using confidence calibration approaches. Going beyond post-hoc T&E will include 
examination of drop-out approaches, Bayesian deep learning, and ensemble methods.  
 
UQ and deep model calibration are complex fields, with many open problems. The difficulties stem 
from FMs’ complexity, data quality, data distribution shift from training and test data, a possible lack 
of access to the model’s internals, scalability of UQ methods, and data fusion (e.g., combining electro-
optical, synthetic aperture and hyperspectral image data), among others. Continued research in UQ 
of FMs is crucial for improving the reliability of FMs in a wide range of applications. 
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