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ABSTRACT 

The National Nuclear Security Administration (DOE/NNSA) Office of Defense Nuclear 

Nonproliferation Research and Development (DNN R&D) has a vision for developing technology 

that will provide unobtrusive surveillance with instantaneous accountability regarding the 

monitoring of nuclear material and nuclear material plant operations. Monitoring and 

characterization of nuclear facilities is an essential activity to meet the goals of the nuclear 

nonproliferation community. New developments in machine learning and cognitive inferencing 

have potential to greatly assist in delivering real-time monitoring capabilities and help in 

optimizing plant operations. Operating such automated monitoring systems requires good 

knowledge management, ability to dynamically update information, quantification of uncertainty 

in measurements, and superior quality interpretation of machine learning and artificial intelligence 

algorithm outputs. This paper will introduce basic concepts regarding how research teams have 

been able to establish analytical techniques that couple observations of diverse physical 

phenomena with subject matter experts (SME) knowledge that will inform data collection and how 

to draw meaningful conclusions about nuclear activities. 

 

INTRODUCTION 

There exists a desire to obtain a state of persistent monitoring of special nuclear material 

and related materials in nuclear related operations. The vision being unobtrusive surveillance with 

instantaneous accountability. Full persistence is often an unobtainable goal, as constant monitoring 

is attended by high cost in an already expensive endeavor.1,2 In an effort to improve persistence 

capabilities DNN R&D has invested in a set of technologies that can demonstrate the concept of 

dynamic persistence.  

Many tell-tale signs of nuclear proliferation activities are subtle, fleeting, and rare.3 One 

must assume that detection of these signatures require measuring everything, everywhere, all the 

time. Finite resources, however, restrict the art-of-the-possible. NNSA scientists developed a 

concept to demonstrate a capability to measure the right thing, in the right place, at the right time 

in the context of nuclear proliferation activities.  

Dynamic persistence is attained through a comprehensive sensing capability that 

incorporates detailed knowledge of process sequences, state of the art cognitive inferencing tools, 

and intelligent coordinated sensing concepts.4 Design principles of the system include the ability 

to dynamically make the best use of available sensing assets and maintain a low barrier of entry 

for incorporating new collection assets. This paper will discuss the basic building blocks of the 

system known as Persistent Dynamic Nuclear Activity Monitoring via Intelligently Coordinated 
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Systems (Persistent DyNAMICS). The dynamic persistence construct provides the first steps 

towards mission-specific, comprehensive sensing systems to detect, locate, or characterize nuclear 

activities without fully persistent sensors. 

 

BACKGROUND 

The Persistent DyNAMICS work consists of multi-disciplinary efforts that developed and 

assessed the building blocks of the dynamic persistence construct. The primary elements that 

established the capability are: 1. Identification of SME-informed, linked sequences of observables, 

confirmed by measurements at a testbed, that have utility for remote confirmation or quantification 

of key nuclear processes, 2. Selection of a persistent suite of multi-modal remote sensors to collect 

observables and measure the temporal relationships between them, 3. Creation of an ecosystem 

for a dynamically persistent, intelligently coordinated sensors to autonomously monitor and detect 

observable sequences under realistic constraints, 4. Integration of the system elements into an 

intelligent, coordinated sensing architecture. At the end of FY23, Persistent DyNAMICS will be 

established as a proven, prototype capability for dynamic persistence, including a representative 

set of sequence signatures, physical assets, and required architecture elements. This will allow 

DNN R&D to evaluate the long-term impact of the dynamic persistence approach towards 

answering important questions to the nuclear nonproliferation problem set. Products from this 

effort are expected to have broad value to the DNN R&D mission portfolios that examine and 

follow special nuclear material production, weaponization, safeguards. Dynamic persistence 

provides a path towards mission-specific, cognitive sensing systems to characterize, confirm, or 

quantify nuclear activities without fully persistent sensors. 

The Persistent DyNAMICS concept describes a new paradigm in proliferation detection 

within the remote sensing mission. It recognizes that the understanding of temporal relationships 

between observables can be used to improve recognition of both individual activities and the set 

of linked activities that generates key materials and components in commercial and state level 

nuclear material production. To successfully develop the scientific foundation and build the 

capability for dynamic persistence, the DOE/NNSA laboratory teams executed four primary tasks: 

Prediction, Data Collection, Intelligent Coordinated Sensing, and Integration.  

The prediction task focused on making progress identifying linked sequences of 

observables with utility for remote confirmation, characterization, or quantification of key nuclear 

processes. The work was organized to advance understanding of sequence signatures and build the 

foundational knowledge for the predictive capabilities that are needed to achieve persistent 

dynamic sensing. The prediction task provided the foundational predictive elements of the 

dynamic persistence sensing system and provides stewardship of this knowledge as it evolves over 

time. 

Data collections task were focused on selecting and employ a persistent suite of remote 

sensors to collect observables and measure the temporal relationships between them. Data from 

this task will be used to recognize and discover linked sequences, to assess the impact of emerging 

persistent capabilities, and to inform development of and provide a performance benchmark for 

dynamically persistent sensing. The work was organized to make remote sensing observations of 

a selected testbed and provide the foundational distributed sensing elements needed to achieve 

dynamic persistence. The data collection task provided the foundational sensing elements of the 

dynamic persistence sensing system. 
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Coordination work focused on creating a dynamically persistent, intelligently coordinated 

sensor ecosystem to autonomously monitor and detect observable sequences under the constraints 

of realistic persistence. This work will develop the building blocks of an intelligent coordinated 

sensing capability to bring together diverse remote sensing capabilities to make multi-

phenomenology sensing collections in real-time. Critical sub-tasks will include a scoping phase to 

design an end-to-end dynamic persistence architecture, the development of foundational dynamic 

sensing infrastructure. This task provided the foundational coordinating elements of the dynamic 

persistence sensing system. Coordination tasking developed and implemented tools to allow 

dynamic persistence to be realized in the Sensor Ecosystem. As such, Coordination interfaced with 

critical subsystems in both the definition and implementation of the ecosystem. Coordination was 

realized through the use and development of state-of-the-art machine-learning and artificial-

intelligence tools to support creation of the dynamic cognitive system that orchestrates Persistent-

DyNAMICS. Coordination guided the system toward the detection of observable sequences 

generated by key subsystems, as well as to the recognition of unanticipated sequences through 

empirical observation. Succes required a close connection among the feedback mechanisms used 

by the cognitive infrastructure. 

Integration tasks focused on unifying the data output from the previous elements into a 

functional system for intelligent, coordinated sensing. This takes a system-of-systems engineering 

approach to include all the systems engineering efforts for integrating individual components to a 

unified dynamic persistence sensing system.  

Unification of these concepts has been achieved and developed into a prototype capability 

that implements the principle of dynamic persistent monitoring and provides a path towards 

mission-specific, cognitive sensing systems to characterize, confirm, or quantify nuclear activities 

without fully persistent sensors. 

 

BASIC CONCEPT 

The Persistent-DyNAMICS concept moves beyond the current Internet-of-Things with 

cloud-based computers to an innovative approach, called Edge computing, where the complex 

sensor data are analyzed near the sensors (“pushed to the edges”)5. Edge computing’s advantage 

is the ability to reduce and abstract data where it is generated, instead of pushing huge data volumes 

to the cloud for analysis. For autonomous remote sensing ecosystems, Edge computing allows 

faster real-time analysis, inclusion of complex data-intensive sensors in the ecosystem, and more 

efficient real-time follow-up. 

The Artificial Intelligence Technique employed for engineering the cognitive component 

of the collection coordination is called Case-Based Reasoning (CBR) with Learning.6 CBR is a 

well-established AI technique that was inspired by human reasoning and learning. Individuals 

solve problems by applying previous experience (individualized or learned) as adapted to the 

current situation. The life cycle of CBR has four main steps: retrieve, reuse, revise and retain. In 

the Persistent DyNAMICS application of CBR, after each event-of-interest is identified and 

classified, the event is mapped to a case containing the expected sequence signature and a follow-

up execution plan which describes what measurements need to be made and when they need to be 

made to collect the key signature information. Persistent DyNAMICS generated each event-of-
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interest based on: (1) historical successful responses and (2) sequence signatures predicted through 

select algorithms. The CBR system learns by evaluating the quality of the response after each 

executed coalition and saves successful responses as new cases. This provides a natural way for 

the system to bootstrap and to learn from experience, even when the signature sequences are poorly 

understood. Persistent DyNAMICS uses two approaches that compensate for the unique data 

environment by incorporating foundational knowledge into model-based inference tools. The 

supervised machine learning (SML) approach generates synthetic training data using simulators 

informed by the forward models, then applies standard machine learning techniques to perform 

inferences on real data (the inverse model). The dynamic Bayesian network (DBN) approach 

combines the forward and inverse models by encoding foundational knowledge as a set of 

variables and their conditional dependencies across time.7 

The Persistent DyNAMICS design allows construction of systems-of-systems or 

ecosystems that optimally respond in real time to emerging threats or unexpected collection 

opportunities by joining an ultra-fast hard-wired follow-up response with a dynamic cognitive 

response. The cognitive response employs temporary coalitions drawn from a diverse set of sensor 

technologies that span ground, air, and space domains. The goal of the Persistent DyNAMICS 

cognitive response is to optimize autonomous-remote-sensing collection for an event-of-interest 

that is shaped by the nature of the event. Each new event-of-interest is spawned as a potential 

coalition and is distributed by a coalition manager (event broker) in real time to a collection of 

external agents with an invitation to join the coalition. The coalition manager collects coalition 

members and determines before the expiration of an opportunity window if sufficient interest is 

present to merit an organized coalition follow-up. If not, the potential coalition is stopped and 

agents that expressed interest are notified. But if sufficient interest is present, the start of the 

coalition is announced, and participating agents are assigned roles that reflect their capabilities. 

The ability of a sensor to opt in or opt out of the event coalition in real time based on the nature of 

the event is an innovative aspect of the network prototype that allows the owners of sensor to 

accomplish their primary mission goals on an as needed basis.  

 

EXAMPLE 

Persistent DyNAMICS was first evaluated at Oak Ridge National Laboratory’s High Flux 

Isotope Reactor (HFIR) and the Radiochemical Engineering Development Center (REDC). 

HFIR/REDC provided the opportunity to determine whether the system could successfully 

monitor nuclear material operations such as the irradiation and chemical separation of targets. In 

this case the goal was to see if reactor activities were consistent with short-lived medical isotope 

production of molybdenum (99Mo) or some other proliferation-relevant isotope. Due to its short 

half-life, production of 99Mo has specific timetables for production that include limited cooling, 

production, and packaging. The task of the remote sensing network was to determine if and how 

difficult it is to distinguish this activity from the myriad of other ongoing activities at the site. The 

Persistent DyNAMICS team deployed the advanced sensor network and included visible imaging, 

thermal imaging, electromagnetic and radiofrequency, vibration sensing, acoustic sensing, and 

overhead collections as nodes in the feeding data to the cognitive inferencing engine.  

Processes begin in an equivalent manner with targets being delivered to the site. If one is 

producing material for a radioisotope thermal generator, for example, the neptunium (237Np) target 
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will be irradiated in the HFIR for ~70 days and then be removed to the cooling pool for a period 

of months. If a target is being processed for 99Mo the HEU target may only be irradiated for 

approximately a week and cooled for about a day to ensure rapid processing and delivery of the 

medical isotope to appropriate medical facilities.  

The Persistent DyNAMICS network collected data over several HFIR cycles to help 

establish a meaningful background and then collected data over more HFIR cycles to evaluate the 

system inferencing procedures. The system follows the methodology developed previously in our 

office called the Modeling and Inference for Remote Sensing (MIRS). The MIRS approach to 

activity characterization from simulated time-sequence observables is to rigorously specify the 

hypotheses as material flow models. The computational model is needed to simulate the 

hypothesized activity to compute parameters for the model, validate it, and provide a baseline 

distribution of the likelihoods computed in the next step. Once a model is trained, known inference 

algorithms are used to compute the relative likelihood that each model explains the sequence of 

remote sensing observations. The model with the highest likelihood corresponds to the answer to 

the questions posed. In this way, modeling and inference links information across facilities, 

observables, and sources of data, assisting the analyst by finding patterns across multiple sensors 

and over time that are consistent with models of facilities that have been verified. Analysts do not 

need to know what pattern to look for in advance, although SMEs do need to identify useful 

observables and the sensors that can detect them.  

In our test case the system was able to successfully determine whether HFIR was operating 

or not, producing 99Mo, or some other proliferation relevant isotope. The system can rapidly and 

autonomously analyze multi-modal, disparate data, and synthesize it to yield the of the state of the 

plant, the expected activity, and assign probability of confidence to activity. Over the course of the 

test period activity, the reactor state inferences achieved over 95% F1-Score in a weighted average 

over the three classes, and the hypothesis inferences were correct in determining the nature of the 

isotope production occurring.8 In addition to the original deployment at HFIR, the Persistent 

DyNAMICS network has been successfully tested at other sites and is planned to be used at NNSA 

testbeds to further evaluate the effectiveness of the system under varying mission parameters. 

 

CONCLUSIONS 

 The Persistent DyNAMICS team has brought the vision of designing, building, and 

demonstrating an architecture for dynamically persistent monitoring of nuclear processes through 

intelligently coordinated sensing to reality. This body of work brought together experts in nuclear 

materials, machine learning, data science, safeguards, and weaponization detection. 

Transferability and extensibility of the prototype has been demonstrated at various testbeds in 

addition to the example mentioned herein. The prototype technologies developed for this project 

are general and have the potential to be tailored for wide use across the nonproliferation mission 

space. The Persistent DyNAMICS team has innovated to create novel solutions and approaches to 

a suite of nuclear security challenges, collaborated with a range of partners to maximize impact 

and bolster mission success, and delivered a unique autonomous network to address evolving 

issues in the nuclear security environment.9  
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