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Abstract

In this paper, we address the problem of generating and enhancing Passive Gamma Emission
Tomography (PGET) data from a deep learning perspective. The PGET instrument has
been developed for the verification of spent nuclear fuel and relies on image reconstruction
and analysis algorithms to detect missing or substituted fuel pins. High quality simulations
are required for validating and further improving such techniques. However, reproducing
the behavior of the original instrument is not straight-forward: complex Monte Carlo sim-
ulations need to be evaluated in order to compute vast amounts of photon histories. This
makes this task extremely time consuming, taking up to several days to compute a single
measurement. We propose the use of Convolutional Neural Networks (CNNs) for comple-
menting and speeding up such process. More specifically, in this work we introduce a U-Net
autoencoder that learns the mapping between incomplete/noisy data and its corresponding
full sinogram. To do so, we exploit the fact that sinograms are highly redundant: the contri-
bution of a single pin can be observed from many different directions. Our CNN learns the
underlying model of the data to effectively exploit these redundancies and to make informed
predictions of complete PGET sinograms starting from partial views. The experimental
evaluation of our trained system shows very accurate results using only a small fraction of
data and with execution times below one second. The technique is suitable for efficiently
generating synthetic PGET sinograms, as well as for enhancing real measurement data.

1 Introduction

The backend of the nuclear fuel cycle, in particular the interim and long-term storage of spent
fuel assemblies (SFA), is currently one of the main challenges in nuclear safeguards. After the
SFAs are removed from the reactor core, they are transferred to water ponds for cooling and
‘short-term’ storage. Over the coming years, large numbers of SFAs will be transferred to dry
storage, either to interim storage facilities or for final disposal. Before the transfer, safeguards
inspectors need to verify the operator’s SFA declaration, as the verification is practically im-
possible once the fuel has been loaded in the interim/final storage canisters. The inspector
should verify that no fuel pin has been removed or replaced. The quantification of the radioac-
tive activity for each pin would be of additional value. Due the high radiation level and other
operational constraints, it is not possible to access the single pins, but the measurement has to
be carried out for the entire assembly using a non-destructive method.

Since no adequate verification tools were previously available, the Passive Gamma Emission
Tomography (PGET) tool was developed and approved by the IAEA for safeguards use in
December 2017 [1–5]. PGET uses two opposing arrays of gamma detectors that measure the
gamma radiation emitted by the fuel pins. The arrays rotate around the fuel assembly step-by-
step, thus generating 2D sinograms. The gamma radiation is measured in several broad energy
windows in order to identify different fission products in the SFA.

*Working under contract for JRC, Ispra
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1.1 Previous works

The verification of SFAs using PGET sinograms relies on advanced image filtering, reconstruc-
tion and analysis techniques. Generally, the pipeline is divided into three consecutive stages,
where the quality of the results achieved in one step heavily affects the subsequent ones: (1)
data pre-processing for correcting the non-uniform response of the detectors, (2) cross-sectional
image reconstruction of the assembly and (3) image segmentation for pin identification and
characterization. The first step is typically addressed with a Gaussian filtering over summed
sinograms as detailed in [1]. The second relies on either analytic [6] or algebraic image re-
construction techniques that may include the modelling of attenuation [7] or scattering [8, 9].
The last stage is supported by image segmentation algorithms that may vary from template
matching [10] to the use of Convolutional Neural Networks (CNNs) [8], amongst others.

Tomographic image reconstruction and analysis is a well-known problem in other domains,
like medicine [11]. However, the PGET imposes some unique constraints due to the high activity
of the pins and self-attenuation that require the development of dedicated techniques. Most of
the works addressing these developments rely on simulations for validating and benchmarking
their results [7–9, 12]. Simulations are attractive for two main reasons: on the one hand, real
measurements are scarce and sensitive. On the other hand, simulations can provide realistic data
for various diversion scenarios that would otherwise be impractical with physical experiments.

Simulations are generally performed by using Monte Carlo radiation transport codes [13]
due to their completeness and realistic results. However, Monte Carlo simulations are computa-
tionally intensive tasks that impose the need of advanced computers and that may take several
days to be performed. The case of the PGET is particularly challenging due to the strong
self-attenuation of the sources, the reduced size of the detectors together with their collimation
and the distance to the source. All these constraints make that the photon current on one de-
tector element can be up to eight orders of magnitude lower than the photon emission rate [14].
To address these issues, general optimization methods have been developed, like variance re-
duction techniques [15], or two-phased simulations that target specifically the PGET unique
characteristics [14]. Nevertheless, simulations times remain in the order of days.

During the last decades, the performance issues of Monte Carlo simulations have been ad-
dressed from a different domain: Computer Graphics. In this field, real-time light transport
simulations are required for achieving realistic renders, where the target refresh rate imposes
processing times in the order of milliseconds. To satisfy this time constraint, this task has been
divided into two steps: (1) a fast Monte Carlo simulation, where very few photons are simulated,
producing very noisy results and (2) a de-noising technique that exploits the partial results of
the previous stage to enhance the final result in an informed way. CNNs have proven to be
perfect candidates for light transport Monte Carlo de-noising applications [16, 17], as they can
effectively learn complex relations between input images (noisy, incomplete simulations) and
target images (final simulations) and they are very easy to train for this task: the training set
consists on pairs of incomplete/complete simulations.

One of the most common CNN architectures for segmentation, de-nosing and inpainting ap-
plications is the U-Net [18]. It is based on an auto-encoder architecture, where skip connections
are added between the encoder and the decoder blocks in each level of the model. It has been
applied to many fields, including general image de-noising [19, 20], SPECT de-noising [21] and
also for de-noising Monte Carlo dose simulations [22].

1.2 Overview

In this paper we address the performance issues of Monte Carlo simulations for the PGET
from the deep learning perspective: we propose a U-Net auto-encoder that learns the mapping
between incomplete/noisy data and its corresponding full sinogram. We overcome the data
hunger of Deep Neural Networks by introducing a fast Monte Carlo simulator that generates
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near real-time sinograms that are used for both, training and validation. Finally, we assess the
degree of generalization achieved by training only with synthetic data. To do so, we evaluate
our trained CNN with real acquisitions [23] and perform a quantitative analysis of the results.

The remainder of this paper is organized as follows: Section 2 explains our technique, dis-
tinguishing between the data simulation (Section 2.1) and the deep learning approach (Section
2.2). Section 3 presents the results achieved with our method and Section 4 outlines the main
conclusions of our work and future developments.

2 Approach

Our approach is based on the fact that PGET sinograms are highly redundant and with a
strong geometrical component: the gamma emissions of a single pin can be observed with
different degrees of attenuation from all the orientations of the detector array. The goal is to
generate a model that is aware of the spatial correlations of data within a single sinogram (i.e.,
a data-driven approach). This way, when facing situations with incomplete sinograms or low
statistics, our model can perform informed interpolations in a holistic manner.

Training a CNN capable of learning such a complex model, whilst ensuring proper gener-
alization, requires a large number of training samples. Unfortunately, traditional Monte Carlo
neutron transport simulations are too slow and become impractical when aiming for generating
thousands of training sinograms. We address this issue by proposing a novel near real-time
simulator and by introducing data augmentation techniques during the training stage.

2.1 Data simulation

Our simulator is based on the Monte Carlo paradigm: sinograms are estimated by integrating all
the detections produced after calculating vast amounts of photon histories. The more effective
photons are simulated, the more accurate the final result will be. We consider an effective
photon the photon that is originated from one pin of the SFA and that ends up producing a
detection in the PGET tool. Since we aim for high performance in our simulations, the goal from
a computational complexity point of view is to simulate as many effective photons as possible
(i.e., ensure that most of the histories calculated end up in a detection), without biasing the
final result and respecting the underlying randomness of Monte Carlo approaches.

To address this computational complexity premise and to optimize the implementation of
our simulator, several acceleration strategies have been developed. This section provides an
overall description of such strategies and some intuitions about their impact in the final result.
A detailed explanation will be provided in a future publication due to space limitations and
because we consider that simulation details are out of the scope of this paper.

The PGET tool considered in this work is the revised version detailed in [4], with 182
cadmium zinc telluride detectors and performing continuous-motion acquisitions that produce
sinograms with 360 orientations. The assembly layouts modelled are the PWR 17x17, BWR
SVEA-96, WWER-440, WWER-1000 and GE14 10x10. For the moment, our simulator is
energy agnostic (i.e., monochromatic) and does not consider the detector response. The photon
interactions considered are photon-pin and photon-water absorptions, due to the photoelectric
effect, and photon-pin scattering. Cross sections of interactions are decoupled from nuclear
physics and expressed in probabilistic terms. Finally, simulations are performed in a 2D space.

These simplifications impose a limit on the accuracy of our simulations when compared with
traditional MCNP simulations. However, considering that our approach is data-driven and the
strong role that geometry plays in the final sinograms, the goal of the simulator is not to produce
perfect sinograms given a SFA detailed description in nuclear terms (initial enrichment, burnup,
cooling time), but to generate data that captures the main characteristics of real sinograms (see
Figure 1). This will allow our CNN to learn most of the parameters of the problem we are
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Figure 1: Comparison between our simulations (left) and real data (right). Notice how, despite
the simplifications introduced, the degree of resemblance between the two sinograms is consid-
erable, allowing a CNN to learn most of the features of the problem by using only simulations.

facing. Then, if it needs to be applied to a specific set of simulations (or real acquisitions), a
final fine-tuning stage will be necessary, where the trained model will be re-trained with few
real samples to fit the new requirements, as demonstrated in [24]. It is also worth noting that,
from a complexity point of view, our simulations pose a more challenging learning problem, as
all pin parameters (emission, absorption and scattering probabilities) are completely decoupled
and can take random values ranging between 0% and 100%.

For accelerating simulations, we decouple the photon interactions inside the assembly from
the photon detection in the detector array: i) in a first step, we efficiently simulate the in-
teractions (absorption and scattering) to compute the exit position and direction (in 2D) of
each photon leaving the fuel assembly; ii) a specific detector element can observe this photon
if the orientation of detector array is within a certain range. The size of the angular range
differs between the detector elements and thus we can compute the ‘probability’ with which
each detector element will observe the photon. Therefore, a single photon simulation generates
a continuous probability distribution contributing to a set of different sinogram pixels, i.e. the
required number of simulated photons is several orders smaller than in a traditional approach
where many photons need to be simulated to obtain a single detection.

Finally, we take advantage on the fact that this type of simulations fall into the area of
computational problems known as embarrassingly parallel. Depending on the way we use the
simulator we perform full parallelization at pin level (in case we are simulating a single sinogram)
or at sinogram level (in case we are batch-simulating a training dataset).

2.2 Deep learning approach

Our approach aims to enhance PGET data. In this work we face the two specific use-cases
illustrated in Figure 2: de-noising low statistics sinograms and addressing the limited view
problem. The first one typically happens when the acquisition time was too short or when the
Monte Carlo simulation was early-stopped. The second one attempts to fill the gaps when only
a subset of sensor readings are available. In the deep learning domain, these two problems fall,
respectively, into the de-noising and inpainting applications.

The architecture of our CNN (Figure 3) is based on the U-Net auto-encoder, with 4 down-
sample blocks, 4 up-sample blocks and their corresponding skip connections. This architecture
imposes a constraint in the data dimensionality: input sinograms need to be down-scaled 4 times
by a factor of 2 and then up-scaled again. No fractional parts are allowed during such operations
and, generally, powers of two are desirable with, ideally, squared aspect ratios. Consequently, as
raw sinograms are 360 pixel wide (one per orientation) and 182 pixel high (one per detector), we
pad them into 512x512 images before passing them through the CNN. For the vertical padding,
the two horizontal bands are filled with zeroes. For the horizontal padding, we exploit the
symmetries of sinograms to fill in the two vertical bands with their corresponding counts from
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Inputs

Expected
outputs

Figure 2: Use-cases faced in this approach: de-noising low statistics sinograms (left) and ad-
dressing the limited view problem (right). In both cases, the goal is to train a CNN that is able
to extrapolate the information contained in the upper sinogram (input) in order to predict the
lower one (expected output) as accurately as possible.

the original sinogram (e.g., the left band covers the detector orientations ranging between -76
and 0 degrees, which can be retrieved from the last 76 columns of the original sinogram). This
way, we avoid hard variations in the input data that may mislead the feature learning of the
CNN (padding with zeroes horizontally would introduce two sharp edges between the sinogram
and the padding vertical bands).

To improve the speed of the learning stage, sinograms are linearly normalized into the range
[0, 1]. Additionally, to improve generalization and exploiting the sinogram symmetries, in each
training iteration sinograms are randomly shifted horizontally. This augmentation technique is
equivalent to rotating the SFA in the simulator and allows to retrieve 360 equivalent training
samples for each simulation performed (each pixel shift corresponds to a one degree rotation).

The training consists on inputting a low-quality sinogram (either a noisy one or one with
limited views) and comparing the prediction of the CNN with the target sinogram. Based
on the differences, the back-propagation algorithm updates the weights of the CNN and the
process continues until convergence is detected (i.e., the CNN’s performance does not improve
anymore). The loss function used for the training is the mean squared error over the per-pixel
differences between the target and predicted sinograms.
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Figure 3: U-Net architecture used. The numbers inside each layer indicate the input size in the
two major dimensions. The number below indicates the number of channels for the input and
output units or the number of filters for the convolutional hidden layers.
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3 Results

The simulations and the CNN training were performed using a computer with an nVidia GeForce
RTX 3090 GPU and an Intel i9-10900X processor, with 10 physical cores (20 logical processors)
at a maximum clock speed of 4.5 GHz.

For training and evaluating the performance of our CNN we simulated 10,000 sinograms.
Those simulations included samples of the 5 SFA layouts modelled, where the placement of the
assembly was randomly set, both in terms of orientation and position wrt. the center of the
tool, but always ensuring a valid setup (i.e., no collisions between the SFA and the PGET tool).
At pin level, the overall number of full pins was randomly selected, considering a minimum
occupancy of 50%. Pin emission, absorption and scattering probabilities were set to random
values where no correlation was forced (the only constraint was that the sum of absorption and
scattering probabilities had to be lower than 1).

Calculating the LUT table of the simulator that models detection probabilities for the PGET
instrument took less than 10 minutes and produced a binary file of 995 MB. This needs to be
calculated only once per instrument specifications and gets loaded by the simulator at bootstrap.

Each simulation was performed in 1,024 sequential iterations where, for each iteration, a
maximum of 3,000 photon histories where computed per pin (based on its emission probability).
The results of each iteration where integrated into a single sinogram that, at the end of the
simulation, is considered to be the ground truth for both, our training and our evaluation
experiments. Intermediate results were stored for iterations 1, 2, 4, 8, 16, 32, 64, 128, 256
and 512. Figure 2 shows the results of the first iteration (top-left) and the full simulation
(bottom-left). After iteration 1024 no significant improvement in the results was observed. The
total simulation time for the 10,000 sinograms was around 8 hours, setting an average time per
simulation below 3 seconds. An additional set of 1,000 sinograms was generated for validation
purposes (i.e., those sinograms were excluded during the training stage).

The training was performed with Tensorflow in mini-batches of 8 samples, using an Adam
optimizer with its default learning rate (10−3) and with a HeNormal weight initialization for
the convolutional layers. In total we trained 14 different CNNs: 7 for the de-noising problem,
where each net was facing a different level of noise in the input data and another 7 for the
limited view problem, where each net was facing a different number views in the input data.
For the de-nosing ones, during the training we inputted the intermediate results saved by our
simulator at iterations 1, 2, 4, 8, 16, 32 and 64. For the limited view ones, during the training
we inputted the final sinogram (iteration 1024), horizontally sub-sampled with factors of 2, 4,
6, 8, 10, 12 and 15. In both cases, the target output was the corresponding full final sinogram.
Figure 2 shows one example of the training data used for the CNN that learnt the de-nosing
for iteration 1 (left) and another example of the training data used for the CNN that learnt the
limited view problem with a factor of 15 (right).

Each CNN was trained for 50 epochs (i.e., 50 training iterations over the complete training
set). For each epoch, sinograms where augmented by performing random shifts in the horizontal
axis (as explained in Section 2.2). The full training of each CNN took less than 3 hours, as it
was early-stopped at epoch 50 due to the presence of over fitting signs in the learning curves.

For each validation sinogram (i.e., a sinogram that was not part of the training set), we
assess the accuracy of our trained networks by comparing the cross-sectional reconstruction of
the ground truth (simulation at iteration 1024) against the cross-sectional reconstruction of the
prediction produced by each trained CNN after inputting an incomplete sinogram (either a noisy
one or one with limited views). Reconstructions are performed with the inverse radon transform
provided by the scikit-image library in Python, that relies on the Filtered Back Projection
(FBP) algorithm [6]. The metric used for assessing the similarity between reconstructions is the
Structural Similarity Index Measure (SSIM) [25]. The higher the SSIM between ground truth
and predictions, the more accurate the results.
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Figure 4: Overall accuracy of all our trained CNN’s. Boxes represent the quartile distribution of
the performance achieved by each CNN after evaluation. The white line represents the median
SSIM, whilst the blue dot represents the mean SSIM.

Figure 4 shows the overall accuracy of our trained CNN’s. The left plot corresponds to
the limited view case, where the sub-sampling ratio increases along the X axis. The right plot
corresponds to the de-noising case, where the degree of noise in the input data increases along
the X axis. In both cases, the complexity increases along the X axis. Figure 5 shows some
examples of the outputs produced by our trained CNN’s compared to the ground truth results.

Considering the results shown in Figure 4 and the fact that the execution time of our trained
CNNs is of a fraction of a second, the potential of this technique for Monte Carlo simulations
becomes evident: in the most extreme case, a simulation could be early stopped when only
1/1024 photon histories have been calculated. By passing this intermediate result to our CNN
trained for iteration 1, the outcome would be a noise-free sinogram that is (on average) 96.87%
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Figure 5: Examples of the outputs produced by our CNNs (bottom) compared to the ground
truth data (top). The left images show two examples of CNNs trained to perform the de-noising
from iterations 32 and 4 whilst the right images show two CNNs trained to work with partial
views with sub-sampling factors of 6 and 15.
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accurate. This means an increase of performance of three orders of magnitude with an accuracy
loss of around 3%. If the target error were below 1%, the increase of performance would be of
a factor of 12, for the limited view use-case, or of a factor of 32, for the de-noising use-case.

To further assess the degree of generalization of our technique and to validate the simulation
results, we tested our CNN trained for limited views with a factor of 6 on real data samples
from [23]. To do so, we created a synthetic problem by subsampling the original sinograms by a
factor of 6 and compared the reconstructions of the outputs of our CNN wrt the ones for the full
sinograms. The overall mean SSIM was of 95.31%, which is around 4 points below the accuracy
we achieved with simulated data (99.55%). However, as Figure 6 shows, the final quality of the
results remains extremely high and, considering that our simulations had no background noise,
were performed in 2D, with monochromatic photons and with no detector response modelling,
we conclude that the degree of resilience achieved by our models is promising. Previous works [?]
have shown that fine-tuning with very small amounts of either, real or MCNP data, would
significantly improve these results.

CNN output
(input data
with 1/6
columns)

SSIM: 96.81% SSIM: 96.26% SSIM: 97.23% SSIM: 95.02% SSIM: 93.24%

Ground-truth
(real data)

Figure 6: Examples of the outputs produced by our CNN with real data, considering the limited
view problem with a subsampling factor of 6.

4 Conclusions and outlook

In this paper we have presented a novel technique that aims to generating and enhancing
PGET data from the deep learning perspective. We have introduced a fast simulator that, by
modelling photon-detector visibility from a probabilistic point of view, allows to generate Monte
Carlo simulations with simplified physics in execution times below 3 seconds. Using these data,
we have trained 14 different CNNs that solve the de-noising and limited view problems with
different degrees of completeness. As results have shown, our technique is able to speed-up
traditional Monte Carlo radiation transport simulations by several orders of magnitude with
a limited impact in the accuracy of the final results. We have further tested our approach by
applying it to real data without re-training the CNNs for it. Results have shown that the degree
of generalization achieved using only synthetic data is promising, despite the limitations of our
simulator.

Future works will address three main topics: (1) Further improvement of the PGET simu-
lator to model, among others, the detector response, particle interactions in 3D and the energy
tracking of the photons. (2) Fine-tuning our trained deep networks to improve their performance
with measured or MCNP data. (3) Addressing practical use cases on top of the proposed ar-
chitecture to face the verification tasks that nuclear inspectors perform on real inspections.
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