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ABSTRACT 

Reviewing surveillance videos from nuclear safeguards facilities is a manually-intensive, tedious 

effort undertaken by nuclear safeguards inspectors who must identify any malicious activity or 

deviations from established protocols. While deep learning methods have demonstrated the 

potential for reducing the manual overhead, they require significant computational resources and 

specialized hardware. Inspectors, however, must often work on-site with the data and are 

frequently constrained to laptop computers. To meet the lower computational requirements, we 

extend compression-based analytics for efficient and effective spatial-temporal anomaly detection 

in video. Compression-based analytics are a class of machine learning algorithms that utilize data 

compression algorithms. At a high level, data compression algorithms aim to encode data in fewer 

bits than the original representation by learning and removing statistical redundancy. In the case 

of video anomaly detection, compression algorithms are used to learn patterns of standard 

operating activity. Normal operating activity will compress well and events that deviate from the 

standard operating behavior (i.e., anomalies) will not compress as well. On a variety of 

surveillance video data sets, we show that our method is competitive with state-of-the-art deep 

learning methods while requiring only a fraction of the computational resources. By including 

methods such as compression-base analytics into the Next Generation Surveillance Review tool, 

we seek to reduce the large burden placed on nuclear safeguards inspectors reviewing surveillance 

videos. 

INTRODUCTION 

The International Atomic Energy Agency (IAEA) Department of Safeguards is charged with 

monitoring the activities occurring in safeguarded nuclear facilities worldwide. Video surveillance 

is a core component employed by the IAEA to help verify the correctness and completeness of a 

State’s declared nuclear-related activities at such facilities. Video surveillance footage allows 

inspectors to identify anomalous activity that deviates from standard operating procedures. In this 

paper, we define anomaly as anything statistically rare compared to events in the training data. The 

IAEA has historically relied on basic capabilities included in the General Advanced Review 

Software (GARS) to make the review process more efficient. Despite these capabilities, reviewing 

surveillance video remains a tedious task that requires significant manual effort and specialized 

expertise. The Next Generation Surveillance Review (NGSR) tool, which will replace GARS, 

provides several improvements, such as the inclusion of advanced machine learning (ML) and 

deep learning (DL) algorithms [1].  

The opportunity to include ML and DL modules in the NGSR tool can reduce the large manual 

burden placed on inspectors performing surveillance review. Many proposed modules use DL 



methods [2, 3, 4, 5, 6, 7], which have demonstrated better than human performance in computer 

vision tasks [8, 9] such as anomaly detection in video [10, 11]. Despite their success, DL methods 

require specialized hardware [12] and large amounts of data [13] to train and run efficiently. 

Unfortunately, many nuclear facilities do not have specialized hardware and the sensitive nature 

of the surveillance video precludes the data from leaving the facility. To overcome the challenges 

of DL, we propose to leverage compression-based analytics (CA), which are based on using data 

compression algorithms to compute a similarity metric between two data items, referred to as the 

normalized compression distance (NCD) [14]. CA has been successfully applied for a variety of 

ML tasks (e.g., classification, clustering, and anomaly detection) across diverse datatypes (e.g., 

genomic, language, and cyber) [15, 16]. Here we apply CA to identify anomalous activities that 

deviate from normal activities captured in a baseline set of training videos. In contrast to previous 

CA methods that focus on sequential representations of 1D tokens (e.g., DNA, natural text, and 

malware binaries) we extend CA to surveillance video, which can be considered a temporally 

ordered sequential representation of 2D images.  

The remainder of this paper is organized as follows. We first provide a background discussion on 

the connections between the goals of data compression algorithms and DL, which motivate the 

development of CA. Our method, which we call Spatial-Temporal NGram PPM (STNG PPM), for 

extending CA to surveillance video is described next. We then summarize the three data sets used 

in our study, two open-source data sets and one safeguards-specific data set from Sandia National 

Laboratories. This is followed by a presentation of our results. Across multiple benchmark data 

sets, we show that CA is competitive with the best DL methods. We conclude with directions for 

future work. 

BACKGROUND 

At a high level, DL algorithms seek to learn a lower dimensional representation of the data to learn 

the statistics of the data rather than memorizing the data; this can be viewed as a form of data 

compression [17, 18] [19]. As an example, autoencoders [17] are a class of unsupervised DL 

algorithms where there are no explicit labels that learn to reconstruct input data. Similar to a data 

compression algorithm, autoencoders are composed of an encoder and a decoder portion with a 

bottleneck module that is lower-dimensional than the input size. Intuitively, the bottleneck module 

represents the compressed knowledge that the network learns, which is analogous to the 

compressed representation that a data compression algorithm learns.  

In supervised learning, where labels are provided, the same principle applies. There is generally a 
layer within a neural network that has fewer dimensions than the input. However, rather than 
reconstructing the input, the task is to predict which class an input belongs to. Reducing the 
dimensionality of the data forces the network to learn the statistics or patterns of the data that are 
associated with a particular class. Similarly, a data compression algorithm that seeks to learn 
statistical redundancies for better compression can be used to learn patterns in data that are 
associated with a particular class. This has implications for applying data compression algorithms 
for use in CA as the class with the data compression model that best compresses a new data item 
can be used for label prediction. 
 
A key distinguishing factor between data compression algorithms and DL is the objective of each 
family of algorithms. DL seeks to minimize an error function, often the reconstruction error in the 
case of an autoencoder, and the prediction accuracy for supervised learning. In contrast, 
compression algorithms seek to minimize the statistical redundancy and the number of bits 



required to transmit the information contained in the signal. Both compression and DL algorithms 
operate on the raw input data, however, DL methods can learn a feature transformation that is 
relevant to the task; this is one of the properties that makes DL extremely powerful, producing 
state-of-the-art results in many domains. However, as discussed in the introduction, DL methods 
have several requirements that make it challenging to apply them to surveillance video from 
nuclear facilities. In the next section, we introduce CA as an alternative to DL.  
 
METHODS 

CA refers to a class of ML techniques that leverage data compression algorithms to compute a 

similarity metric, known as the normalized compression distance (NCD), between two data items 

𝑥 and 𝑦. The NCD is defined by Li et al. [14]:  

𝑑(𝑥, 𝑦) =
|𝐶(𝑥𝑦)| − min (| 𝐶(𝑥)| , |𝐶(𝑦)|)

max (| 𝐶(𝑥)| , |𝐶(𝑦)|)
, 

where |𝐶(∗)| denotes the compressed size of ∗ after applying a compression algorithm 𝐶, and 𝑥𝑦 

denotes 𝑥 and 𝑦 concatenated. If 𝑥 and 𝑦 are very similar, then the compressed size of the two 

items concatenated is close to the compressed size of each item alone and 𝑑(𝑥, 𝑦) ≈ 0; if 𝑥 and 𝑦 

are very dissimilar, then the compressed size of the two items concatenated is close to the sum of 

the compressed size of each item alone and 𝑑(𝑥, 𝑦) ≈ 1.  

In the above equation, any real-world compressor can be used to obtain |𝐶(∗)|. Prediction by 

Partial Matching (PPM) with Arithmetic Coding (AC) [20] is an adaptive statistical data 

compression algorithm based on context modeling that is commonly used for calculating the NCD. 

Importantly, PPM-AC allows us to extend the application of data compression algorithms beyond 

their use in computing a similarity metric between two data items.  Instead of compressing a data 

item using an adaptive context model of the current data item, 𝐶(𝑥), we can compress a data item 

using a fixed, previously-trained context model, 𝐶(𝑥|𝑀), where 𝑀 is the context model. How well 

(or poorly) data item 𝑥 compresses using the context model 𝑀 is a measure of how normal (or 

anomalous) that data item is with respect to what was observed in the data used to train 𝑀. As an 

example, if 𝑀 is trained on surveillance video of standard operations, activities not observed during 

these periods will not compress well and will be identified as anomalies.  

In our work, we use a modification of PPM-AC, called NGram PPM [21]. Instead of applying AC 

to do the actual compression to obtain |𝐶(𝑥|𝑀)|,   NGram PPM uses the PPM context model 

directly to compute a score 𝑠(𝑥|𝑀) that indicates how well an item would be compressed. By 

skipping the actual compression step, NGram PPM is significantly faster than PPM-AC while 

providing equivalent results.  
 
The original application of context modelling using PPM was intended for sequences of 1D tokens 
such as text. Here, we extend NGram PPM for application to video, which is a temporally ordered 
sequence of 2D frames. Our approach converts the 2D problem into a 1D problem in the following 
way. Each region in the video can be represented by a temporally ordered 1D sequence of values 
𝑥𝑖 = 𝑧𝑖1, 𝑧𝑖2, … , 𝑧𝑖𝑛 for regions 𝑖 = 1, … , 𝑚, where 𝑛 is the number of frames; see Figure 1. We 
note that a region can be defined for different spatial resolutions. At the highest resolution, a region 
may correspond to a single pixel; at a lower resolution, it is possible to group pixels together to 
reduce noise. Additionally, we explored the use of motion vector angles and magnitudes from 
motion estimation algorithms [22] as features rather than raw pixel values. Motion vectors describe 



how pixels change from one frame to another. Importantly, the representation used to construct 
the 1D sequences constrains the type of anomaly identified. For example, RGB pixel magnitudes, 
motion vector angles, or motion vector magnitudes can be used to identify anomalies according to 
color, direction, or speed. Future work will involve other representations as well as combining 
information from multiple representations.  
 

 

 
 

  

The train and evaluate paradigm is depicted by Figure 2. Using video of baseline operations, our 
approach is to train local NGram PPM context models 𝑀1, 𝑀2, … , 𝑀𝑚 using the 1D sequences for 
each region of the training video. New videos are evaluated by scoring each region using its 
corresponding local NGram PPM model. It is possible to assign a single score to each region of 
the video by using the entire sequence 𝑥𝑖 . That is, it is possible to compute 𝑠𝑖 ≡  𝑠(𝑥𝑖|𝑀𝑖). 
However, this score does not provide any temporal information about when the anomaly occurs. 
Instead, we assign a score for each region of each frame. Specifically, for each region 𝑖 =
1, … , 𝑚  of each frame 𝑗 = 1, … , 𝑛, we compute a score 𝑠𝑖𝑗 ≡  𝑠(𝑧𝑖𝑗−𝑘 … 𝑧𝑖𝑗−1𝑧𝑖𝑗|𝑀𝑖), which 

indicates how well the NGram PPM context model 𝑀𝑖 compresses a window of the sequence 𝑥𝑖 , 
from 𝑗 − 𝑘  to 𝑗, where 𝑘 denotes the temporal window size. Regions and frames (i.e., times) with 
large scores will be flagged as anomalies. We refer to the approach of spatial and temporal anomaly 
detection as Spatial-Temporal NGram PPM (STNG PPM).  
 

We note that the local NGram PPM context models 𝑀1, 𝑀2, … , 𝑀𝑚  are trained independently for 

each region and that this lends itself to parallelization. The number of regions 𝑚 can also be 

Figure 2: Model training and evaluation paradigm 

Figure 1: Extract temporally ordered 1D sequences from local regions of the video. 



adjusted according to available computational resources and/or runtime demands. In future work, 

we will extend our approach to account for correlations between regions as well as longer-time 

dependent relationships.  

  

 

DATA SETS  

This section describes the data sets that we use to evaluate the performance of STNG PPM for 

anomaly detection in surveillance video. 

 

UCSD Pedestrians Data Set 

The UCSD Pedestrians data set [23] is a video data set acquired from a mounted stationary camera 

overlooking pedestrian walkways on the campus of the University of California San Diego 

(UCSD). Anomalies that are not seen in the training data include non-pedestrian activities such as 

people riding bicycles or driving small carts, as well as motion patterns such as pedestrians walking 

outside the flow of normal traffic. All anomalies are naturally occurring, that is, not staged. There 

are two data sets taken from different perspectives: Peds1 captures people walking towards and 

away from the camera; Peds2 captures movement parallel to the camera plane. Examples of frames 

from Peds1 and Peds2 are shown in Figure 3a and 3b respectively. 

 

CUHK Avenue Data Set 

The CUHK Avenue data set [24] was acquired at the Chinese University of Hong Kong (CUHK) 

campus. It contains video footage of a walkway and entrances to a building. Compared to the 

UCSD Pedestrians data sets, it is a more challenging including such as a slight camera shake and 

a larger variety of anomalies including novel objects not observed in the training video and staged 

anomalous events. A frame from this data set is provided in Figure 3c.  

 

Sandia National Laboratories’ Gamma Irradiation Facility 

As a proof-of-concept use case for nuclear safeguards, we also examine data collected from 

Sandia National Laboratories’ Gamma Irradiation Facility (GIF). Like many nuclear facilities, it 

contains a drying location and a spent fuel pool. Figure 4 shows the monitored area and the path 

use to bring a nuclear container to and from the drying area. The training video contains only 

video of containers exiting the drying area while the test video includes the containers both 

entering and exiting the drying area. There are several additional on-going activities in both the 

training and test videos, including a flashing light, people moving in the background, and a 

Figure 3: Example frames from the UCSD Pedestrians data sets (a) Peds1, (b) Peds2, and 

(c) the CUHK Avenue data set. 



container being lifted and lowered into the spent fuel pool. In this scenario, we consider 

containers leaving the drying area as normal and containers entering the drying area as 

anomalous. 

 

RESULTS 

In this section we first evaluate STNG PPM on the previously described open-source data sets and 

show that it is competitive with state-of-the-art DL methods. We also evaluate STNG PPM on a 

data set collected at Sandia National Laboratories, which represents a more realistic setting for the 

nuclear safeguards application. All our computations take place on CPUs. We use Dual Socket 

Intel E5-2683v3 2.00GHz CPUs with 28 total cores. Since our algorithm is parallelizable, multiple 

cores speed up the computation but are not required.  

 

To compare with DL methods, we adopt the frame-level criteria for calculating area under the 

curve (AUC). A frame is considered anomalous if any region in the frame is marked as anomalous. 

This criterion measures the performance of identifying anomalies in each frame and is commonly 

used in previous studies [23, 25]. However, there are multiple issues with using this evaluation 

measure. First, the frame-level AUC does not account for the localization of the anomaly. 

Therefore, if a frame contains an anomaly but there is no spatial overlap between the ground truth 

label and the algorithm prediction, a frame is still considered a true positive. This inflates the true 

positive rate. Second, if a frame does not contain an anomaly but even a single region in the frame 

is marked as anomalous (e.g., due to noise from camera shake), a frame is considered a false 

positive. This inflates the false positive rate. Alternative evaluation measures have been proposed 

to address these weaknesses [25] but have not been included in many prior works making it 

difficult to compare prior works with STNG PPM. Additionally, these new evaluation measures 

suffer their own issues. A detailed discussion is outside the scope of this paper and is being 

addressed as part of future work and is forthcoming.  

Figure 4. Example frame of the video from the Gamma Irradiation Facility at Sandia 

National Laboratories used to evaluate our workflow and the path followed for exiting 

containers. The path for containers entering the drying area follows the same path in reverse. 



 

The results of STNG PPM compared with the reported results from state-of-the-art DL methods 

are shown in Table 1. As discussed in the methods section, there are multiple ways to represent a 

region in STNG PPM. Because we are most interested in anomalous activities as opposed to 

objects, we choose to use motion vectors computed from an 6 x 6 block of pixels to represent a 

region [26]. That is, 𝑥𝑖 = 𝑧𝑖1, 𝑧𝑖2, … , 𝑧𝑖𝑛 represents a 1D sequence of motion vectors in region 𝑖 =
1, … , 𝑚, where 𝑚 is much smaller than the original number of pixels. Thus, grouping pixels into 

blocks not only reduces noise, it also reduces the demand for computational resources, as each 

region can be computed in parallel. While the block size sets the spatial resolution, the temporal 

resolution is set by the window size 𝑘 = 3 of the 1D sequence of motion vectors over which the 

STNG PPM scores are computed; recall the score is defined by 𝑠𝑖𝑗 ≡  𝑠(𝑧𝑖𝑗−𝑘 … 𝑧𝑖𝑗−1𝑧𝑖𝑗|𝑀𝑖). 

Additionally, we follow the procedure in many DL methods to smooth out the spatial and temporal 

noise. Specifically, we use a median filter across 3x3 regions and a median filter across 3 time 

steps. In calculating the frame-level metric, we also follow the method by Georgescu et al. [27], 

assigning the maximum NGram PPM score for each frame and then applying a Gaussian filter to 

the scores.  

 

Table 1: Frame-level area under the curve (AUC) for a number of DL methods and our 

proposed CA method, STNG PPM.  

Method UCSD 

PEDS1 

AUC 

UCSD 

PEDS2 

AUC 

CUHK 

Avenue 

Conv-AE [28] 81.0% 90.0% 70.2% 

Conv-WTA-AE [29] 91.9% 92.8% 82.1% 

GAN (ICIP 2017) [10] 97.4% 93.5% --- 

Future Frame Prediction [30] 83.1% 95.4% 85.1% 

Object-centric auto-encoder [11] --- 97.8% 90.4% 

Appearance-motion cGAN [31] --- 96.2% 86.9% 

MLAD0+3 [32] 82.3% 99.2% 71.5% 

Memory-Augmented AE [33] --- 94.1% 83.3% 

Siamese Distance Learning [34] 86.0% 94.0% 87.2% 

STNG PPM (ours) 84.5% 90.5% 76.3% 

 

For UCSD Peds1 and Peds2, our method achieves favorable results compared to previous works 

using DL methods. Although STNG PPM does not outperform all the previous DL methods, we 



emphasize that it does not require the use of GPUs and instead takes advantage of multiple CPU 

cores for parallel execution. For the CUHK Avenue data set, STNG PPM achieves a frame AUC 

score of 76.3%, which is lower than the DL methods. Although STNG PPM is not restricted to 

using only motion information, our current implementation operates on only the motion vectors 

limiting anomaly detection to only anomalous movement. Thus, novel static objects are not 

detected. If we remove the first two CUHK videos in which a non-moving bag present in the 

foreground is considered anomalous, STNG PPM achieves a frame AUC of 84.0%, which is more 

competitive with state-of-the-art DL methods. 

 

For the GIF video captured at Sandia National Laboratories, we marked each frame in the test 

video as anomalous if a container was moving into the drying area. Our method achieves a frame 

AUC of 94.5%. Frames overlaid with the scores from STNG PPM for a container being moved in 

(anomalous, left) and for a container being moved out (normal, right) are shown in Figure 5. 

Anomalies are indicated by higher scores, or higher color intensities, in the heat map. We observe 

that the frame with a container being moved in (left) has higher scores around the container, as 

compared with the frame with a container being moved out (right). Clearly, this differentiates the 

anomalous activity (spatially and temporally) from standard operating conditions.  

 

CONCLUSIONS AND FUTURE WORK 

We have presented a workflow leveraging compression-based analytics (CA) to identify 

anomalous activities in video. On open-source data sets as well as on video from a safeguards-

relevant facility, we demonstrated that our method, Spatial-Temporal NGram PPM (STNG PPM), 

is competitive with state-of-the-art DL methods without requiring specialized hardware. The 

opportunity to include CA into the Next Generation Surveillance Review (NGSR) tool can help 

alleviate the tediousness of reviewing surveillance video and reduce fatigue-induced errors.  

There are several key areas for future work to improve on STNG PPM. Specifically, we will 

consider 1) fusing other video representations with the motion vectors to detect more complex 

anomalies (e.g., based on both object and motion), 2) incorporating spatial dependencies between 

regions when training the local models, and 3) applying time series analysis techniques to discover 

anomalous patterns and trends. From a more practical perspective, future work also needs to 

Figure 5: Heat map of STNG PPM scores for the GIF video. (Left) Anomalous activity of 

container entering the facility. (Right) STNG PPM scores of standard behavior of a 

container leaving the facility 



examine the applicability of STNG PPM to safeguard specific datasets and improved engineering 

for scalability. 

 

ACKNOWLEDGEMENTS 

This paper describes objective technical results and analysis. Any subjective views or opinions 

that might be expressed in the paper do not  necessarily represent the views of the U.S. 

Department of Energy or the United States Government. Sandia National Laboratories is a 

multimission laboratory managed and operated by National Technology & Engineering 

Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the 

U.S. Department of Energy’s National Nuclear Security Administration under contract DE-

NA0003525. SAND2023-02849C 

REFERENCES 

 

[1]  M. Thomas, A. A. Alessandrello, S. Rocchi, E. Galdoz, M. John, C. Brunhuber, M. Moeslinger, A. 
Smejkal, K. Ruuska and J. Pekkarinen, "Next Generation Surveillance Review (NGSR): Enhancing 
The Safeguards Toolkit," in The Joint INMM-ESARDA Annual Meeting, 2021.  

[2]  S.-H. Park, "Diversion Detection using Optical Surveillance based on Deep Learning," in The Joint 
INMM-ESARDA Annual Meeting, 2019.  

[3]  M. R. Smith, D. Hannasch, M. Hamel, M. Thomas and C. Gaitan-Cardenas, "A Deep Learning 
Workflow for Spatio-Temporal Anomaly Detection in NGSS Camera Data," in The Joint INMM-
ESARDA Annual Meeting, 2021.  

[4]  M. Thomas, S. Passerini, Y. Cui, J. Rutkowski, S. Yoo, Y. Lin, J. H. Park, M. R. Smith and M. 
Moeslinger, "Deep Learning Tequnies to Increase Productivity of Safeguards Surveillance Review," 
in The Joint Annual INMM-ESARDA Annual Meeting, 2021.  

[5]  Y. Lin, X. Zhang, J. H. Park, S. Yoo, Y. Cui, M. Thomas and M. Moeslinger, "Using Machine Learning 
to Track Objects Across Cameras," in The Joint INMM-ESARDA Annual Meeting, 2021.  

[6]  Y. Yokochi, S. Chen and K. Demachi, "A Novel Detection Approach to Preventing Theft of Nuclear 
Materials Using Deep Learning-based Object Detection and Human Pose Estimation," in The Joint 
INMM-ESARDA Annual Meeting, 2021.  

[7]  E. Wolfart, A. Casado Coscolla and V. Sequeira, "Deep Learning for Video Surveillance Review," in 
The Joint INMM-ESARDA Annual Meeting, 2022.  

[8]  K. He, X. Zhang, S. Ren and J. Sun, "Delving Deep into Rectifiers:Surpassing Human-Level 
Performance on ImageNet Classification," in Proceedings of the IEEE international conference on 
computer vision, 2015.  

[9]  S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing 
Internal Covariate Shift," in International Conference on Machine Learning, 2015.  

[10]  M. Ravanbakhsh, M. Nabi, E. Sangineto, L. Marcenaro, C. Regazzoni and N. Sebe, "Abnormal event 
detection in videos using generative adversarial nets," in IEEE International Conference on Image 
Processing (ICIP), 2017.  

[11]  R. T. Ionescu, F. S. Khan, M.-I. Georgescu and L. Shao, "Object-centric Auto-encoders and Dummy 
Anomalies for Abnormal Event Detection in Video," in IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), 2019.  

[12]  N. C. Thompson, K. Greenewald, K. Lee and G. F. Manso, "Deep Learning’s Diminishing Returns," 
IEEE Spectrum, vol. 58, no. 10, pp. 50-55, 2021.  



[13]  J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. A. Patwary, Y. Yang and Y. 
Zhou, "Deep Learning Scaling is Predictable, Empirically," arXiv preprint, p. arXiv:1712.00409, 2017.  

[14]  M. Li, X. Chen, B. Ma and P. Vitanyi, "The Similarity Metric," IEEE Transactions on Information 
Theory, vol. 50, no. 12, pp. 3250-3264, 2004.  

[15]  R. Cilibrasi and P. M. B. Vitanyi, "Clustering by Compression," IEEE Transactions on Information 
Theory, vol. 51, no. 4, pp. 1523-1545, 2005.  

[16]  C. Ting, N. Johnson, U. Onunkwo and J. D. Tucker, "Faster classification using compression 
analytics," in International Conference on Data Mining Workshops , 2021.  

[17]  M. A. Kramer, "Autoassociative Neural Networks," Computers & Chemical Engineering, vol. 16, no. 
4, pp. 313-328, 1992.  

[18]  G. E. Hinton, A. Krizhevsky and S. D. Wang, "Transforming auto-encoders," in International 
Conference on Artificial Neural Networks, Espoo, Finland, 2011.  

[19]  J. Balle, V. Laparra and E. P. Simoncelli, "End-to-end optimized image compression," in 
International Conference on Learning Representations, 2017.  

[20]  A. Moffat, "Implementing the ppm data compression scheme," IEEE Transactions of 
Communications, vol. 38, no. 11, pp. 1917-1921, 1990.  

[21]  T. Bauer, "NgramPPM: Compression Analytics without Compression," Sandia National 
Laboratories, 2021. 

[22]  S. Zhu and K.-K. Ma, "A new diamond search algorithm for fast block-matching motion estimation," 
IEEE transactions on Image Processing, vol. 9, no. 2, pp. 287-290, 2000.  

[23]  W. Li, V. Mahadevan and N. Vasconcelos, "Anomaly detection and localization in crowded scenes," 
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 1, pp. 18-32, 2013.  

[24]  C. Lu, J. Shi and J. Jia, "Abnormal Event Detection at 150 FPS in Matlab," in Proceedings of the IEEE 
international conference on computer vision, 2013.  

[25]  B. Ramachandra and M. Jones, "Street scene: A new dataset and evaluation protocol for video 
anomaly detection.," in Proceedings of the IEEE/CVF Winter Conference on Applications of 
Computer Vision, 2020.  

[26]  scikit-video developers, "scikit-video: video processing in Python," [Online]. Available: 
http://www.scikit-video.org/stable/. [Accessed 2023 04 2023]. 

[27]  M. I. Georgescu, R. T. Ionescu, F. S. Khan, M. Popescu and M. Shah, "A Background-Agnostic 
Framework with Adversarial Training for Abnormal Event Detection in Video," IEEE transactions on 
pattern analysis and machine intelligence, vol. 44, no. 9, pp. 4505-4523, 2021.  

[28]  M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury and L. S. Davis, "Learning Temporal Regularity 
in Video Sequences," in Proceedings of the IEEE conference on computer vision and pattern 
recognition, 2016.  

[29]  H. T. Tran and D. Hogg, "Anomaly Detection using a Convolutional Winner-take-all Autoencoder," 
in Proceedings of the British Machine Vision Conference, 2017.  

[30]  W. Liu, W. Luo, D. Lian and S. Gao, "Future frame prediction for Anomaly Detection - A New 
Baseline," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.  

[31]  T.-N. Nguyen and J. Meurier, "Anomaly Detection in Video Sequence With Appearance-Motion 
Correspondence," in IEEE International Conference on Computer Vision (ICCV), 2019.  

[32]  H. Vu, T. D. Nguyen, T. Le, W. Luo and D. Phung, "Robust Anomaly Detection in Videos Using 
Multilevel Representations," in Proceedings of the AAAI Conference on Artificial Intelligence, 2019.  



[33]  D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh and A. van den Hengel, "Memorizing 
Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder for Unsupervised Anomaly 
Detection," in IEEE International Conference on Computer Vision (ICCV), 2019.  

[34]  B. Ramachandra, M. Jones and R. Vatavai, "Learning a distance function with a Siamese network to 
localize anomalies in videos," in Proceedings of the IEEE/CVF Winter Conference on Applications of 
Computer Vision, 2020.  

 

 

 


