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Abstract 

The authors built and tested a stochastic simulation to estimate achieved detection probabilities (DPs) 
on a stratum basis, over a tailorable range of diverted amounts from 0 to 2 significant quantities (SQ), 
using typical International Atomic Energy Agency (IAEA) inspection data: i.e., SQ in stratum, 
number of items, number of gross/partial/bias defect measurements conducted, and realistic relative 
standard deviation (RSD) values for typical IAEA verification measurements. For bulk strata, the 
model calculates achieved DP at 0.01 SQ diversion increments; for item strata, the model calculates 
DP using the smallest realistic diversion increment (e.g., a plate, pin, or coupon). After successfully 
benchmarking against IAEA deterministic models, the simulation was used to test the sensitivity of 
DP to certain standard assumptions and selected input parameters. First, the equal defect assumption 
was tested; the results suggest significant complexity in the effectiveness of partial defect 
measurements. Next, the authors explored the sensitivity of DP to the assumed RSD of attribute tests. 
Then, the authors compared non-normal models for instrument performance (e.g., logistic, step, or 
arbitrary functions) to the typical results from a normal distribution (characterized by RSD). This last 
comparison was supplemented with experimentally derived performance data for an HM-5 gamma 
spectrometer. The HM-5 was used to make enrichment measurements on both LEU and HEU MTR 
fuel elements as plates were removed, and the results fit with logistic and step curves and applied in 
the simulation. These stochastic DP results were compared to DP estimates from a deterministic 
model assuming a normal curve and typical RSD, yielding insights that could improve effectiveness 
in the field. These early results illustrate the potential of stochastic models to better understand 
achieved DP and to improve safeguards effectiveness.      

Introduction 

To verify nuclear material inventories in a facility, IAEA inspectors first group the items into different 
strata and then test (measure) randomly selected items in each stratum to look for differences (defects) 
between operator declarations and measurement results. The IAEA employs well known statistical 
sampling methods [1, 2, 3] to achieve a desired probability for detecting the diversion of a significant 
quantity (SQ)1 of a given material type2 from each stratum. This detection probability (DP) is equal 
to the probability that one or more defected items were selected in the sample (Ps) multiplied by the 
probability the test identifies a selected item as defected (Pi). 

This statistical sampling approach can provide a prescribed number of measurements of different 
methods (a sampling plan) as well as the corresponding expected DPs for each stratum. Under very 
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limited circumstances, these stratum level DPs are equivalent to the detection probability for a 1 SQ 
diversion of that material type at the facility level (that is, equivalent to the probability of detecting 
the diversion of sub-SQ amounts from multiple strata that total 1 SQ at the facility level). But more 
generally this is not the case.  

As IAEA safeguards evolve to focus more on the State level, there is a need to estimate achieved3 DP 
over aggregated inventories and against more sophisticated diversion strategies that involve multiple 
strata. The goal of this research effort has been to examine the utility of stochastic methods for 
estimating achieved DP in such cases.4 The development and benchmarking of a stochastic model to 
treat this problem are detailed in Refs [4, 5, 6]. This paper will summarize interesting early results 
from this stochastic model. 

Background 

The stratification process involves grouping nuclear material by common characteristics like material 
type, physical form (e.g., item vs bulk), and relative mass. Some of these groupings are related to the 
measurements to be made (inside a given stratum, sampled items must be measured with the same 
methods), and some are related to the statistical methods applied (e.g., the assumptions underlying 
these statistical methods break down if items with very different masses are grouped together). 

Selected items from each stratum are subjected to gross defect measurements, and sometimes also to 
partial or bias defect measurements. A gross defect measurement tests for the diversion of all the 
nuclear material in an item. It is typically a qualitative, “yes/no” test (an attribute test) such as looking 
for the 186 keV gamma peak from U-235 or for the collimated Cherenkov light from spent fuel 
assemblies. A partial defect test is a quantitative measurement to determine if there is substantially 
less material in an item than declared. It is typically a non-destructive assay (NDA) such as the 
neutron coincidence counting performed on fresh LWR fuel assemblies. A bias defect test looks for 
the protracted diversion of small amounts of nuclear material that would go unnoticed in a typical 
NDA measurement. This has traditionally implied sampling for destructive analysis (DA) but could 
also include, for example, the use of gamma tomography to detect the diversion of a single pin from 
a spent fuel assembly.  

Inspectors design sampling plans (how many randomly selected samples from each stratum to test) 
using the list of inventory items provided by an operator and estimates of the relative measurement 
uncertainties of the various measurements they will apply. These estimates are provided as relative 
standard deviations (RSDs) for each measurement method assuming a normal distribution.5 For 
qualitative (gross defect) measurements, a 15% RSD has historically been assumed. Selected samples 
are subjected to gross, partial, or bias defects using a statistical approach that generally attempts to 
minimize the number of more intensive (bias and partial) measurements in favor of simpler gross 
defect measurements, while still delivering the desired overall DP in the stratum. 

Summary of the Stochastic Model and Test Data 

Development and benchmarking of the stochastic model are detailed in Refs [4, 5, 6]. In short, the 
model takes as input a set of facility data that specify (by stratum): the number of items; the mass of 
nuclear material in SQ; the number of gross, partial, and bias defect measurements performed during 
the inspection; and the RSDs of the applied measurements. Mock facility data were created for an 
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enrichment plant, a fuel fabrication plant, a light water reactor (LWR), and a research reactor (MTR). 
This data was derived from actual facilities, rounded, and then scaled to representative sizes. The 
measurement RSDs were also derived from real data but rounded and adjusted to be realistic but non-
specific. 

Using a Monte Carlo approach, the stochastic model repeatedly simulates the random selection and 
measurement of items during an inspection to determine the probability of detecting a given diversion. 
At first, the measurements were simulated using an RSD-based error model, but this was later 
generalized to handle any kind of error model. DPs were calculated for diversions ranging in size 
from 0 to 2 SQ at (nominally) 0.01 SQ increments. This granularity was incorporated to address the 
combination of sub-SQ diversions from multiple strata in later calculations. Presently, the stochastic 
model considers two diversion strategies: Case 1) equal amounts are diverted from every item in the 
stratum (to minimize identification probability), and Case 2) diversions are concentrated in as few 
items as possible (to minimize selection probability).6 In Case 2, one item is partially diverted while 
the rest are either fully diverted or not tampered. 

For comparison, IAEA statistical methods assume the defects across a set of tampered items are equal 
in mass (the “equal defect assumption”), and then calculate the DP for a 1 SQ diversion spread across 
a varying number of items from 1 to N (where there are N items in the stratum). The stochastic model 
was adapted to duplicate this scenario as well, which is a type of Case 1 hybrid. In fact, the stochastic 
model is able to model any arbitrary set of defects (varying both the number of tampered items and 
the amounts taken from each item), meaning it could be used to test the sensitivity of the IAEA model 
to the equal defect assumption.  

The stochastic model outputs DP curves vs. SQ diverted (and, if desired, also vs. items tampered) for 
each stratum in a facility. The model then attempts to combine these curves using various algorithms 
to determine a minimum DP curve across all strata in a facility. Stratum level results were 
benchmarked against a deterministic model, the results of IAEA models, and other published data [5, 
6] to ensure the stochastic model was functioning correctly. Aggregated results were also 
benchmarked against a published case employing a deterministic solution. [6] 

Additional functionality was later added to more accurately model the attribute (yes/no) 
measurements typically used for gross defect tests (e.g., like detecting a U-235 gamma peak from a 
coupon or the Cherenkov glow of spent fuel.). To do this, step and logistic curves were substituted 
for RSD-based models of uncertainty. In theory, the stochastic approach can accept any arbitrary 
model for the identification probability of an instrument. To this point, the authors made enrichment 
measurements on both HEU and LEU MTR fuel assemblies as plates were removed one-by-one. 
These empirical results were then fit to a logistic or step curve and used in the stochastic model to 
represent the identification probability for these specific measurements. Later in this paper, the results 
of these measurements are compared to the results from standard gross defect attribute tests with an 
assumed 15% RSD. 

Selected Results for an Enrichment Plant 

Figure 1a shows the achieved detection probabilities for a stratum of 26 LEU product cylinders at an 
enrichment plant for both diversion strategies (Cases 1 and 2). The sampling plan was designed to 
achieve 20% DP against a 1 SQ diversion of LEU from this stratum, which it obviously does for both 
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diversion strategies. However, the sampling plan is less effective when diversions are concentrated 
in fewer cylinders (that is, minimizing the selection probability) than when a small amount is taken 
from all cylinders. The result highlights the effectiveness of—and the need for—the DA samples (bias 
defect measurements), which are almost certain to detect defects exceeding a small threshold, in this 
case, about 1 - 2% of the cylinder content. 

Figure 1b shows the result for a stratum of 300 DU tails cylinders in the same facility. In this case, 
however, the sampling strategy is more effective when the diversion is concentrated in fewer 
cylinders. Spreading the diversion across all 300 cylinders creates defects so small that even the DA 
measurement is not sensitive enough to detect the diversion at the desired level. (It could be that a 
bias would be discernable across all measurements; the added DP from material balance evaluation 
was not considered in this simulation.)  

Finally, Figures 2a and 2b show the Case 1 hybrid where the equal diversion assumption is applied 
but the number of defected items is varied. The resulting DP surfaces show an interesting feature—a 
trough of lower DP. The authors had originally thought that Cases 1 and 2 might bound the solution 
space, but the presence of this trough indicates that the tradeoff between selection and identification 
probabilities is more complex that initially believed. One hypothesis for this trough is that it reflects 
the impact of partial defect measurements (which combine features of gross and bias measurements). 
In any case, the result warrants further study, and stochastic simulation has proven to be a very useful 
tool for such explorations.  

Testing Statistical Assumptions 

As just illustrated, the stochastic model provides a highly flexible tool for exploring the sensitivity of 
DP to different sampling plans and measurement techniques. It can also be used to test the sensitivity 
of statistical models to their underlying assumptions. The IAEA statistical model often assumes a 
15% RSD for gross defect measurements. Figure 3 shows the sensitivity of DP to a range of assumed 
RSD values from 10% to 30% for the gross defect verification of spent fuel at an LWR (Case 2). For 
this simulation each spent fuel assembly holds 0.6 SQ of plutonium (or about 0.002 SQ per pin), pins 
are diverted one at a time, and defects are concentrated in as few assemblies as possible. False alarms 
are removed (resolved) so that they do not artificially inflate the DP. We see a quantization effect in 
the results as each additional assembly is defected. Each diverted assembly adds about 10% DP, but 
where this shift occurs varies significantly with the assumed RSD. Note that while the size of this 
effect in this LWR stratum was significant (a 10% step over a 0.4 SQ range), in other cases the effect 
was smaller (e.g., for DU cylinders at an enrichment plant it was only 2%).  

As a result, it would seem important to understand the sensitivity of DP to the assumed gross defect 
RSD on a case-by-case basis. Alternatively, a more accurate model could be adopted for such 
qualitative gross defect measurements. Another advantage of the stochastic approach is the ease by 
which different measurement models can be substituted. The stochastic model used here was 
ultimately generalized to take as input any arbitrary identification probability curve. In particular, step 
and logistic curves were eventually substituted for the normally distributed error model, and an MTR 
case was even run using an experimentally derived, instrument-specific random error model (see 
below). 
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MTR case including a non-normal error model 

At research reactors, gross defect measurements are a commonly applied measure for verifying fresh 
MTR fuel assemblies. Inspectors typically use a handheld gamma spectrometer (an “HM-5”) to 
confirm the presence of the 186 keV U-235 peak in a selected item. However, the same instrument, 
properly calibrated, could also be used to perform an enrichment measurement on the assembly.  

For this simulation, the authors created two experimentally derived identification probability (Pi) 
curves: one for an attribute (yes/no) test for the presence of a 186 keV peak, and one for an enrichment 
measurement. For the attribute test, it was confirmed experimentally that the HM-5 used in attribute 
mode could easily detect a U-235 peak even when a single MTR plate was placed behind a dummy 
assembly. This experiment was used to design a step shaped identification probability curve where 
the presence of one or more MTR plates provided a positive result and the absence of all plates 
detected the defect. 

For the enrichment measurement, the empirical Pi curve was built as follows: The HM-5 enrichment 
measurement was calibrated by measuring a normal (18 plate) HEU MTR assembly with a nominal 
enrichment of 93%. This measurement yielded an estimated random error of approximately 1%. 
Plates were then removed one at a time and the enrichment measurement repeated. Figure 4a shows 
the collected data with the 3 cutoff used as an alarm threshold (horizontal red line). It can be seen 
that, as plates are removed, the altered geometry and the deficit of uranium seen by the HM-5 detector 
causes an apparent drop in the measured enrichment. This data was fit by a logistic-shaped 
identification probability curve (Figure 4b). 

The authors then used these two experimentally derived curves (logistic and step) along with the 
standard 15% RSD error model to simulate the results of diversion from an 80-element fresh fuel 
stratum totaling 0.8 SQ of HEU. Specifically, the stochastic model simulated 1) an attribute (yes/no) 
measurement for the presence or absence of U-235 using a Gaussian error model with an RSD of 15% 
(the default way this measurement is planned and analyzed at IAEA), 2) the same attribute 
measurement using the experimentally validated step function, and 3) an enrichment measurement 
using the experimentally derived logistic function. 

Figure 5 plots the results for two diversion strategies: a) diverting only full assemblies, and b) 
diverting plates but spreading the defects over as many assemblies as possible. In the case of full 
assembly diversion, all three methods yield identical DP curves, because DP only depends on the 
selection probability (all three identification probabilities are the same for a fully diverted item). 
However, when the diversion is spread over all the assemblies by removing individual plates the three 
simulations yield very different results. The 15% RSD assumption predicts a DP of about 50% once 
the defect exceeds about 0.33 SQ, whereas the step curve predicts that the DP remains effectively nil 
until the diversion exceeds 0.7 SQ (almost all of the plates removed). This implies that the Gaussian 
error model substantially overestimates the achieved DP for this verification and is not a good model 
on which to base sample planning. A more realistic step curve should be used instead. 

The enrichment measurement achieves a much higher DP for much smaller defects (already 90% by 
the time the diversion exceeds 0.05 SQ). An attribute measurement typically takes about 10 seconds 
to complete while the enrichment measurement requires 180 seconds. However, this time difference 
is not significant when only a few measurements are needed during a one-day inspection (which is 
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typically the case). The implication is that enrichment measurements would be far more effective 
(deliver much higher DP) than attribute measurements for a similar investment of time, but also that 
better modelling is required to deliver accurate estimates of expected DP when creating sampling 
plans or selecting instruments and measurements to apply. Stochastic simulation could therefore 
contribute much to the planning and implementation of safeguards by allowing realistic modelling of 
verification measurements. 

Aggregation of DP to Facility and State Levels 

As mentioned at the beginning of this paper, the main purpose for investigating stochastic models 
was to see if they could be used to aggregate achieved DP in individual strata to the facility and State 
levels. Preliminary results are available with respect to this challenge [7, 8], but this work is more 
generally still in progress. 

A number of algorithms have been tested to date in an attempt to produce accurate results using 
reasonable computing time. Figures 6 and 7 show the results of a partitions method that computes all 
possible combinations at each step (0.01 SQ) and then selects the lowest DP. This method is 100% 
accurate but computationally intensive. For the enrichment case a result was calculated in 2 minutes, 
but for a more complex set of strata and measurements at a fuel fabrication facility it took almost 30 
minutes and only yielded results up to 0.5 SQ. In some cases, the model exceeded the available 
computational capacity. 

The problem is tricky and some of the algorithms tried by the authors failed to yield the lowest DP 
(using the partitions method as a check). Initial test of a Greedy algorithm indicate that it works well. 
Figure 8 provides an example result. The authors continue to test other algorithms that can solve this 
minimization problem. 

Conclusion 

A stochastic simulation was built and tested to estimate achieved detection probabilities (DPs) on a 
stratum basis for typical IAEA verification measurements. While the main purpose for investigating 
stochastic models was to see if they could be used to aggregate achieved detection probabilities in 
individual strata to the facility and State levels, stochastic simulation has also proven useful for testing 
statistical assumptions and evaluating the effectiveness of selected verification measures. In 
particular, the authors confirmed that the tradeoff of identification and selection probabilities in 
certain diversion strategies can be quite complex, possibly due to the impact of the partial defect test. 
This result implies that the consequences of the equal diversion assumption warrant further study. 
Also, stochastic simulation was able to shed light on the sensitivity of DP to the error models and 
assumed RSD for gross defect tests. These results indicate that better modelling is required to deliver 
more accurate estimates of expected DP when creating sampling plans or selecting instruments and 
measurements to apply in the field.  

The overall conclusion from our initial results is that stochastic simulation is a very promising tool 
that could contribute greatly to the calculation of achieved DP and the understanding of how different 
factors influence achieved detection probabilities. 
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(a) (b) 

Figure 1: Achieved detection probabilities at an example enrichment plant for (a) an LEU product stratum, and 
(b) a DU tails stratum. Results shown for both diversion strategies: minimizing identification probability (Case 
1) and minimizing selection probability (Case 2). 

(a) (b) 

Figure 3: Sensitivity 
of achieved detection 
probability to a range 
of assumed RSD 
values from 10% to 
30% for gross defect 
verification of spent 
fuel at an LWR (Case 
2) after the removal 
(resolution) of false 
alarms. 

Figure 2: Case 1 hybrid diversion strategy showing achieved detection probabilities when equal amounts are 
taken from a varying number of items at an example enrichment plant: (a) LEU product stratum and (b) DU 
tails stratum. Compare to Figure 1. 
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Figure 5: Achieved detection probabilities for a fresh HEU MTR fuel stratum: (a) minimizing selection 
probability (Case 2) and (b) minimizing identification probability (Case 1). This figure compares results 
of attribute measurements with different error models (assumed 15% RSD vs experimentally determined 
step curve) against enrichment measurements (with an experimentally determined logistic error model). 

Figure 4: (a) Experimental enrichment measurements of a fresh MTR fuel element (nominal enrichment = 
93%) using an IAEA “HM-5” detector as plates are removed. Horizonal red line shows the 3 alarm level 
under which a defect is considered detected. (b) Fit of MTR data to a logistic Pi curve. 

(a) (b) 

(a) 

(b) 
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Figure 8: Minimum 
aggregate detection 
probability estimated with 
steeping method or Greedy 
algorithm for the same 
enrichment facility as shown 
in Figure 6. The diversion 
strategy was to minimize 
identification probability 
(Case 1). Computation time 
was approximately 5 
seconds. 

Figure 7: Minimum 
aggregate detection 
probability estimated with 
the brute force (partitions) 
method for an example fuel 
fabrication facility with nine 
strata. The diversion 
strategy was to minimize 
identification probability 
(Case 1). Computation time 
was approximately 30 
minutes. 

Figure 6: Minimum 
aggregate detection 
probability estimated with 
the brute force (partitions) 
method for an example 
enrichment facility. The 
diversion strategy was to 
minimize identification 
probability (Case 1). 
Computation time was 
approximately 2 minutes. 
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Notes: 

1 By definition, 1 SQ equals 8 kg of plutonium or U-233, 25 kg of U-235 in HEU, 75 kg of U-235 in 
LEU, 10 MT of natural uranium, 20 MT of depleted uranium, or 20 MT of thorium. 

2 Material types include plutonium, DU, NU, LEU, HEU, and thorium in either irradiated or non-
irradiated forms. 

3 “Achieved” is used here to indicate post-inspection rather than a priori. In a statistical sense these 
are estimated detection probabilities.  

4 To date this project has limited its scope to considering the achieved detection probability from a 
given set of measurements. Another interesting problem is to optimize the required sampling plan 
to achieve a desired DP at the facility or State level. This more complex problem has not yet been 
addressed. 

5 RSDs are provided by IAEA statisticians and are generally derived from past performance data for 
the given measurement or for similar measurements or (alternatively) based on International Target 
Values (ITVs). 

6 It may be thought that these two strategies bound the problem. However, the relationship between 
these two can be more complex. Results indicating such a case will be presented later in the paper. 
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