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Abstract 
In this study we compare the performance of various strategies in extracting features from gamma-
ray spectra for radionuclide identification. The primary objective of feature design is to reduce the 
number of dimensions for the classifier, therefore improving performance while avoiding 
overfitting. We used two feature extraction methods, principal component analysis (PCA) and peak 
integration, and also used the raw spectra. Multilayer Perceptron (MLP) classifier was used to 
compare the performance between the different feature extraction methods. Training and testing 
samples were generated with a 3”x3” NaI detector model with a source library of 33 radionuclides 
with a spanning set of shielding configurations. The drawn samples included variable background 
and mixtures of SNM (Special Nuclear Material) with masking sources. The overall performance of 
each feature design was assessed using the F1-score. Individual radionuclides that performed best 
and worst in each feature design were compared as well. 
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Introduction 

Interpreting gamma-ray spectra to identify source radionuclides requires subject matter experts 
which are fewer in number than the demand from the various deployed detectors. Algorithms can 
fill this gap by allowing unskilled operators to identify the measured radionuclides. Machine learning 
classifiers can perform such classification, given a representative training data set, and have been 
studied in recent years as an alternative to custom-built expert systems. Neural networks are a 
popular classifier, because of their ability to ingest a variety of data without the need of extensive 
pre-processing.  

There have been previous studies conducted on using neural networks to identify radio nuclides 
from their gamma-ray spectra. Many of these studies use raw gamma-ray spectra as features to feed 
into the neural network [2][5][6]. However, spectra distributed across many channels create a very 
high dimensionality space in which noise can exist. This can potentially increase the difficulty of 
the problem for the neural network as it has to be able to recognize a nuclide across any variation of 
noise by itself.  

Feature extraction, and pre-calculations of features are often employed in machine learning 
problems. They can have benefits such as reducing noise, reducing dimensionality, and removing 
irrelevant information. This work will focus on comparing different feature transforms when applied 
to the spectra, and how it affects identification performance. 

Neural Networks 

Neural Networks 

A simple neural network is a nonlinear mathematical model which tries to find an arbitrary 
relation mapping Ra to R1. It achieves this by using gradient-descent based methods. This data is 
given a number of samples which allows it to train and optimize towards the relation which best fits 
the data that is given. The model updates its parameters to find a nonlinear complex function to 
model the relation.  

Neural networks are often used when machine learning is applied to identification of 
radionuclides [2][3][5][6]. They are a good baseline classifier as they have a robustness to perform 
on many kinds of features without many constraints on the data it is fed. Therefore, neural networks 
are capable of handling both raw spectra, and extracted features used in this work. 

Optimization 

In the implementation of our neural network, we used the ADAM optimizer due to the robustness 
of the method in application across machine learning problems [1]. We chose to use commonly 
applied ADAM parameters: ɑ = 0.001, which changes the rate of learning in the model, and β = 0.9, 
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ϐ = 0.99, ε = 10^-8 which all affect the momentum in the gradient descent method. For 
implementation of this method, we used the Scikit-learn implementation of the Multi-Layer 
Perceptron classifier [4]. 

Features 

In order to train a network to be robust to all variations of noise, background, and gain would 
take a very large amount of data and would likely have a large training time. Pre-calculations to 
account for noise, background, and reduce dimensionality help reduce the variations within the data 
allowing for the classifier to be more robust without needing as much training data. Two feature 
designs, Principal Component Analysis (PCA) and peak extraction, will be compared alongside 
“raw” features (counts in all channels) from the full gamma-ray spectrum.  

Sample Generation 

Training and testing sets were constructed by sampling from a pre-computed spectra template 
library of 33 radionuclides with a spanning set of shielding configurations. The PCA transform and 
peak extraction are then performed on the generated spectra. This ensures that all the sets contain 
data from the same spectrums for fair comparison. 

Raw Spectra 

The raw gamma-ray spectra are created via sampling from templates generated from GADRAS 
for a NaI 3x3 detector model and bucketed into 2000 channels from 0 to 6000 keV [7]. The 
background samples are composed of world average background and variable sub-components 
which include the primordial terrestrial radionuclides. In any given background sample, the 
proportion of the average background varies between 20% to 40% and sub-components comprise 
the remaining 60% to 80%.  

The source samples for each radionuclide include a spanning set of shielding configurations. The 
background samples are combined with source samples in order to satisfy a specified signal-to-noise 
ratio (SNR).  In this case, the SNR is the proportion of the source counts to counts from the 
background sample. In addition to the background, we include a Cs-137 intrinsic source which is 
used in the real world for gain stabilization. The intrinsic source rate is assumed to be 100 counts 
per second (cps) and the background rate varies between 150 to 400 cps. Each sample is drawn 
between 30 to 60 seconds, and the chosen SNR along with aforementioned rates implies the 
appropriate source sample counts to draw from a chosen template. For mixture sets, the samples are 
a mixture of 60% to 80% of an arbitrary masking nuclide and 20% to 40% of Special Nuclear 
Material (U-235 or Pu-239).  
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PCA Features 

The PCA transform is a well-known transform which reduces the dimensionality of the feature 
space. By creating new axes along the vectors through the feature space which have the most 
variance, the features can be reordered into corresponding eigenvectors and eigenvalues representing 
the data. Then the features that account for little variance within the features space can be removed. 
This allows the most information regarding the variance to be preserved in the fewest number of 
features. The spectra were re-binned to a square root binning taking 256 bins from 20 - 3000 KeV. 
This increases the volume of the information stored in each bin so that meaningful data can be 
extracted from its variance. 

Peak Extracted Features 

The Benchmark for Radionuclide Identification Algorithm (BARNI) was used to extract peak 
features [8]. BARNI uses a continuum estimator followed by a derivative method for finding the 
peaks. If the peak is found within a predefined region-of-interest (ROI) then the counts in that peak 
and the square-root of the continuum counts under that peak are added to that ROI features. The 
regions are defined ahead of time by sampling each radionuclide with a high number of counts 
(50k+) and automatically selecting the regions around a high density of peak locations. A set of 
ROIs are defined for each radionuclide, which are normalized to the total counts in those sets of 
regions, with the total counts representing their own feature.  

Procedures 

Performance Metric 

The F1-score metric was used for the measurement of performance of general classification. This 
ensures that for general classification a model has to be able to perform well identifying nuclides by 
demonstrating both high precision and recall. 

SNM masking cases are also evaluated for total accuracy of identifying concealed SNM. For 
these masking samples, samples are counted correctly only if the model identifies the present SNM 
in the samples. The accuracy is the ratio of the number of correctly identified samples over the total 
number of samples.  

Training and Testing Data Sets 

In this study there were two main groups that were tested: single nuclide and masked SNM. Each 
group was trained and tested over a range of SNRs, with masked SNM necessitating a higher SNR 
in order to achieve reasonable performance.  

Sets of “low” SNR ranges (1-5, 5-10, 10-15, and 15-20) were generated for the single nuclide 
cases. Masking was not used as the SNR range is too low to get meaningful data to identify the 
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masked nuclide. Models were trained on each of these, then tested against all low SNR sets. They 
were evaluated by F1-score performance. 

Sets of “high” SNR ranges (50-100, 100-15, 150-200) were generated for both single nuclide 
and masking cases. Models were trained on each of these, then tested against all other high SNR 
sets. They were compared on metrics of F1-score for identification of single nuclides, F1-score for 
identification of masking cases, and total accuracy of SNM identification for masking cases. 

Results 

F1-scores of Models Trained and Tested on Single Nuclide Samples Set 

The performance of single nuclide trained models tested on single nuclide cases at low SNR 
ranges is shown in Figure 1. At the lowest SNR bucket (1 to 5), identification was difficult with the 
best model being a PCA feature oriented model trained on the same SNR bucket performing with an 
F1-score of 0.4. The majority of models tended to perform best on sets that have the same SNR 
ranges to the sets that they were trained on, and often outperformed models from the same feature 
design that were trained on other SNR ranges. This excludes the raw gamma-ray spectra featured 
model trained on 1 to 5 SNR range which failed to identify the majority of nuclides. Overall 
identification tended to become easier at the higher end of the SNR ranges for the majority of models. 
PCA features performance was comparable to the raw gamma-ray spectra performance; meanwhile 
the peak extracted featured models tended to perform worse overall in comparison to other featured 
models. 

The poor performance of the raw gamma-ray spectrum trained model may be attributed to the 
fact that the raw spectra was trained off of a very high noise on an unprocessed spectrum, thus 
preventing it from finding the meaningful ranges necessary for identification. This demonstrates that 
feature extraction and selection can improve performance if the training set is noisy and has 
relatively low amount of relevant signal.  
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Figure 1 F1-Score Performance for Identification of Single Nuclides trained and tested at low 

SNR ranges. 

 

F1-scores of Models Trained and Tested on Single Nuclide and SNM Masking Sets 

For this set of evaluations, we compared the performance of training on only the single nuclide 
set against training with both single and SNM masking sets. The training models on the set that 
included singles and masked SNM performed far better on SNM masking test sets than the models 
trained purely on single nuclide sets, as shown in Figure 2. This came with a miniscule detriment to 
overall performance in the single nuclide identification when trained on the single nuclide and SNM 
masking set, as shown in Figure 3. Overall, the raw spectra tended to have the highest robustness to 
the different kinds of sets, with raw spectra models being consistently the top contender for most 
arbitrary nuclide as well as SNM identification tasks. 

Interestingly, the models trained on the lowest SNR ranges tended to have the best performance 
for identifying singles; the models trained on the 50 to 100 SNR bracket performed close to the top 
for single nuclide sets for the single nuclide set trained models per their respective feature transforms 
and the models trained on the 50 to 100 SNR bracket set tended to perform the best on single nuclide 
identification for the single nuclide and SNM masking trained models per their respective feature 
transforms. In the case of the single nuclide and SNM masking set trained models, this could be due 
to the models being trained on a high amount of Pu-239, and U-235. This would cause the SNM to 
have more weight in the total proportion of the cost function, causing classification of those nuclides 
to be more important to the classifier. Training on the lower SNR range would have the MLP have 
to identify the other nuclide from less source, potentially making the network be more sensitive to 
those nuclides as the source is increased. 
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Figure 2 Comparison of model performance (F1 score) trained on Single Nuclide Set (left) and 

trained on both Single Nuclide and SNM Masking Set (right), tested against the SNM Masking Set.  

 
 
 

 
Figure 3 Comparison of model performance (F1 score) trained on Single Nuclide Set (left) and 

trained on both Single Nuclide and SNM Masking Set (right), tested against the Single Nuclides Set. 

Accuracy of SNM Indemnification of Models Trained on Single Nuclide and SNM Masking Sets 

For identification of SNM sources masked by other nuclides, training on the set including singles 
as well as masked SNM sources far outperformed training purely on single nuclides, as shown in 
Figure 4. This is likely due to the fact that the single nuclide trained models were not trained on Pu-
239 or U-235 in quantities as low as the ones seen in the SNM masking set. For masked sources, the 
peak extracted feature-trained models performed the best out of models trained on only the single 
nuclide set. For overall performance on identifying masked SNM, the PCA features trained on the 
single nuclide and masking sets performed the best, with each SNR bucket for the SNM masking set 
being best identified by the PCA featured model trained on the same set. 

For the models trained on only the single nuclide set, the best performance came from the peak 
extracted features. This may be due to the extracted features pre-defining its regions of interest to 
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feed the model. The feature extracted model may perform better than the PCA or raw gamma-ray 
spectra models as it is fed features specific to peaks from Pu-239 and U-235. This may lead it to be 
easier to identify the SNM when it is present in a mixture compared to the other models as the peak 
information and noise reduction allows for a more obvious distinction to the presence of SNM in the 
sample. 

 
Figure 4 Accuracy of SNM identification for models trained on only Single Nuclide Set (left) and 

trained on both Single Nuclide and SNM Masking sets (right). 

Models Training Time 

The comparison of model training times for the different feature extraction methods and raw 
spectra is shown in Figure 5. The raw gamma-ray spectra models had the longest overall training 
time across all models, often taking over double the duration of the other models to train. In general, 
the preprocessed features took significantly less time to process.  

The peak extracted features took the least time, despite having more feature dimensions than the 
PCA feature extraction. This may be due to the feature extraction features pre-defining regions of 
interest for classification. This would make the model not have to learn the many of peaks associated 
with each nuclide from scratch allowing it to more quickly converge towards its optimum. 

The lower amount of training times for pre-processed features will be useful as the variation in 
the distribution of training data is increased and more samples will be required for training. 
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Figure 5 Comparison of model training time for different feature extraction methods. 

Conclusion 
Overall, raw gamma-ray spectra, as well as PCA extracted features had the best overall 

performance when it came to identification of the source for gamma-ray spectrum. Though 
performing well in most cases, raw spectra appeared to be more sensitive to the data it was trained 
on then either of the other feature transforms, entirely failing to form meaningful identifications 
when trained on some sets with high noise. 

In addition, sometimes PCA featured models performed better than raw gamma-ray features by 
a notable margin. This may be attributed to the square root binning of the spectra allowing for better 
identification of nuclides at higher energies. Although the peak extracted features tended to perform 
worse on most cases, there were cases where it performed better than the other models when trained 
on a less complex set than what it was tested on. This may be useful when applying the extracted 
features to real world data, as the more concise peak data may serve useful for identification when 
the model has to look at data from distributions it has not seen. Feature extraction appears promising 
in reducing the amount of training time as well as attaining adequate levels of performance. This 
will be useful as the size of training sets scales up when the models have to be applied to real-world 
data. 

Neural Networks are capable of performing classification tasks for nuclides from NaI gamma-
ray spectra using various feature transforms and are capable of doing this across various SNR ranges. 
The best feature design is dependent on the classification task and the data which it is trained on. 
Future work will pertain to how calibration error affects each of the performances of the feature 
designs. 
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