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Abstract 
Current practices for safeguards verification are largely based first on manual and independent 
interpretation of data streams from separate sensors followed by expert driven contextual 
interpretation. The work presented here develops a framework to integrate and utilize the 
wealth of information contained within large and heterogeneous datasets. The approach is 
demonstrated on persistent, disparate data collected from a nuclear training facility at Los 
Alamos National Laboratory. Features are first extracted from the individual data streams, then 
various feature-importance metrics are employed to down-select the feature matrix to a subset 
that is best able to characterize the facility operations, i.e. its “pattern of life”. The resulting 
features are then input into supervised learning methods to classify modes of facility 
operations. The fusion of these disparate data streams yields a more accurate characterization 
of facility operations than any data stream individually and with a rather high degree of 
confidence. In addition, through the criterion of feature importance we are able to rank the 
sensor modalities with respect to the information they provide to characterize facility 
operations. This approach can be useful in a limited sensor deployment scenario or in planning 
stages of safeguards measures implementation. The developed framework can be adapted and 
applied to any other type of facility or sensor, and the associated data streams. 
 
Introduction 

Current practices for safeguards verification are largely based on manual and independent 
interpretation of data streams from separate sensors followed by expert driven contextual 
interpretation. The work presented here integrates a wealth of information from many different 
modalities collated within large and heterogeneous datasets. The approach is demonstrated on 
persistent and event-based disparate data collected from a nuclear training facility at Los Alamos 
National Laboratory (LANL) and aims to classify activities of interest at the facility. The framework 
presented here could be adapted and applied to any other type of facility or sensors and the 
associated data streams. 
 

To answer the question of what type of activity is occurring within the facility under scrutiny, 
a large set of features is extracted from the individual data streams of eight different and diverse 
modalities, ranging from temperature and humidity to nuclear material accountability tracking 
records. A feature is deemed `important’ if it is informative for classifying modes of facility 
operations, determined through an analysis with a random forest [4]. After an initial screening, 
two well-established feature-importance metrics for random forests, the Gini impurity index and 
permutation importance-based methods, are applied to the features. In addition, we present a 
novel feature importance metric based on operator spoofing, apply it to the features and 
compare to the other metrics. This spoofing method is similar to the permutation-based 



approach, but addresses the question of which features are robust to mislabeled data. A random 
forest is trained on intentionally spoofed data, and then features are ranked based on which are 
able to recover the ‘true’ classification. 
 
The Facility 

The facility under scrutiny within this study is a Safeguards Training Facility located at LANL 
at Technical Area 66 (TA-66) [1]. It consists of a single building (see Figure 1), which is classified 
as a Category 3 nuclear facility, and includes offices, conference rooms, and a laboratory for 
nuclear material nondestructive assay (NDA) training courses. These courses involve the 
measurement of both uranium and plutonium, and the students consist of IAEA inspectors or 
other nuclear safeguards (both domestic and international) professionals.  Other operations that 
take place at the facility include general office work, seminars and meetings in the conference 
rooms, courses that do not involve measuring nuclear material (e.g., statistics), individual course 
preparation, and testing instrumentation in the lab. The presence of certain uranium and 
plutonium bearing items during some of the training courses yield certain safeguards-relevant 
operations such as material accounting and control, including escorting of course participants by 
designated LANL employees. 
 

 
Figure 1-Safeguards Training Facility Located at TA-66. 

 
Overall, there are only a few and fairly simple operational modes at TA-66, certainly in 

comparison to the operational complexity of commercial nuclear power plants or Category 1 
nuclear facilities.  On the other hand, a majority of nuclear facilities operate within a finite set of 
well-defined states, e.g., a nuclear power plant is usually either operating or refueling, and 
diversion or misuse scenarios are distinct from those states within the normal operation set, and 
are relatively straight forward when compared to facilities that handle bulk nuclear material, such 
as production facilities. 
 
Data and Feature Extraction 

The TA-66 facility was monitored using multiple, continuously collected, disparate data 
streams. Persistently collected data is recorded with seven inexpensive sensor platforms that 
integrate sensors of light, temperature, and humidity, measured at 1 Hz (i.e., one measurement 



per second) and tri-axial vibration, measured with a 4 Hz frequency (i.e., four measurements per 
second). A series of simple calibration tests, using items such as a space heater and flashlight, 
were conducted to ensure sensors were working as expected and to test the sensitivity of the 
sensor platforms. Neutron counts are also persistently collected with a Portable Handheld 
Neutron Counter (PHNC) [2] stationed within the laboratory. The neutron data consists of singles 
and doubles rates, with one measurement recorded every 3 seconds. The approximate location 
of the persistent sensors can be seen in Figure 2.  

   
Figure 2-Simplified floor plan of the facility.  Red circles represent sensor platform location 

and red square represent the neutron detector.  Actual floor plan restricted. 

Event based data was also collected and incorporated into the analysis. This data includes 
materials movement logs, through a nuclear data accountability system called Source Tracker, as 
well as badge reader data indicating entry and exits into the laboratory and the building, and 
room scheduling, which involves reserving some of the common areas, such as the conference 
room, for a meeting or presentation, but does not indicate whether the room was actually used 
during that time. 
 

The large volume and variety of data necessitated a thoughtful data management plan. The 
data is currently collected via a Wi-Fi network to a central location, cleaned up and stored in a 
database. The dataset itself is a critical element in advancing new methods development and 
testing, as there is currently no facility data open source to the research community due to 
confidentiality concerns. 
 

In order to resolve the persistent and event-based data and differing sampling rates onto a 
common time scale, features were extracted from all data streams [3]. This results in a new 
dataset consisting of a feature matrix that is aligned in time. These features represent a summary 
of the activity observed by the data stream over each time interval. Features considered include 
summaries of empirical distributions (e.g., moments, extreme values), counts, fractions of 
counts, entropy, and tailored features derived from knowledge about a specific modality or a 
combination between modalities. After various checks and data cleaning, the resulting feature 
matrix consists of 473 hourly features extracted from raw data collected from July 18, 2018 
through February 23, 2020; spanning 1 year, 7 months, and 5 days of data. The breakdown of 
modality from which the features were extracted is shown in Table 1. Note that the ‘Combo’ 
feature modality is actually a combination of features from two different modalities.  



 

Neutron Light Humid Temp Vibration Room 
Schedule 

Badge 
Reader 

Source 
Tracker 

Combo 

24 44 44 44 126 5 1 20 165 
Table 1-Number of features extracted from each modality. Note that light, humidity, 

temperature, and vibration are combined for all seven sensors. 
 

The response variable of interest is a categorical variable indicating the current operating 
state of the facility. There are five possible categories for each hour: standard working operations 
(i.e., weekday between 7:00 am and 6:00 pm), course day, preparation for course day, standard 
non-working operations, and holidays. Course days include those that involve nuclear material 
as well as those that do not, and preparation days are defined as 7 calendar days prior to a course, 
excluding weekends and holidays.  
  
Feature Selection Methodologies 

Because the question of interest is classifying the operation state of the facility, i.e., the 
response variable of interest is a categorical variable, the analysis methodology to be used is 
classification. We will focus on the methodology of random forests, as they have become a very 
popular data analysis tool due to their successful application to classification problems in various 
application areas. A random forest is an ensemble of decorrelated decision trees, which, by using 
a variety and large number of trees, increases the stability of the predictions from the model [4]. 
Random forests are particularly suited to handle the “large p, small n” problem, where there are 
many potential predictor variables (large p), but much fewer observations (small n).  
 

As an initial screening of features, we determine which features are correlated with the 
response variable. Those that are uncorrelated will likely not have any predictability power, thus 
we aim to select features whose distributions are distinct for different response variable 
categories. However, because our response variable is categorical, measures of correlation such 
as the Pearson correlation coefficient are not appropriate.  Instead, we will use the results of the 
Kruskal-Wallis test to initially eliminate uninformative features. This statistical test is a non-
parametric alternative to the one-way analysis of variance (ANOVA) and tests the assumption 
that all categories have been drawn from the same population against the alternative that at 
least one is different, through a ranked sum process [5].  
 

Two popular methodologies for assessing variable importance within an analysis performed 
via random forests are the Gini index and permutation methods. The Gini index is based on node 
impurity and is often used as the optimization criteria in creating the splits within the decision 
trees that make up the random forest [6]. As a variable selection method, the Gini index averages 
the decrease in node impurity over all splits for a given variable. This method has been shown to 
be biased with both categorical and continuous predictors [7]; however, all predictor variables 
considered in this work are continuous. 
 



Alternatively, the permutation method of variable importance is based on the premise that 
randomly permuting the values of a predictor is analogous to removing it from the model.  Unlike 
the Gini index, the permutation methods are applicable for methodologies other than random 
forests. For each variable, the model’s prediction ability is compared when its values are in order 
against when the values are randomly shuffled [6].  A large decrease in prediction ability indicates 
high variable importance.  This approach uses out-of-bag observations for prediction and is more 
computationally expensive than the Gini index [8].  
 

In this work we will also present a novel variable importance metric similar to the 
permutation variable importance metric that specifically addresses a question of interest within 
the project, that of operator misdeclaration. Thus, we are interested in which variables are robust 
with respect to prediction ability when trained with data that has been intentionally spoofed.  In 
other words,  when a declaration is not correct and an operator tries to fool us, the variables are 
still able to recover the true classification label.   
 

This approach, named Spoofed, will have a similar form to the permutation-based method, 
but with a few modifications. The algorithm is detailed below: 

1. Change the response variable labels for a few observations, i.e., emulate receiving 
intentionally spoofed data from an operator. 

2. Fit a random forest using the spoofed data. 
3. Predict the spoofed days and compute the prediction accuracy using the true variable 

labels. 
4. For each variable of interest: 

a. Permute the variable values. 
b. Predict the spoofed days. 
c. Compare prediction accuracy from unpermuted.  

There are a few differences between this method and the original, permutation methods.  
First, we are only interested in predicting the observations for which we have intentionally 
spoofed. Second, the prediction accuracy used in this method will represent training error, 
because we will be predicting observations that were used to train the model, in contrast to the 
traditional permutation methods that uses out-of-bag sample predictions and thus test error.  
However, if the spoofed observations were left out of the training and only used for prediction, 
it would not address the question of interest. Although the error will be biased high, the ranking 
of the variables will not be affected because the bias will be consistent across variables, and we 
are not interested in the raw prediction ability, only the ability to rank.   
 
Results 

The three feature selection methods were applied to the 473 features extracted from the 1 
year, 7 months, and 5 days of data from eight modalities collected from the TA-66 Safeguards 
training facility. The results of each, through the features selected from each modality, are 
compared in Figure 3 and Figure 4. The first figure shows the raw number of features selected by 
each method from each modality. Note that the Kruskal-Wallis initial method of down selection 



was applied before the Gini, Permutation, or Spoofed methods, thus each of these approaches 
will have equal or fewer numbers per modality than the After KW or Original approaches. 

 
 

Figure 3-Number of features for each modality for the various feature selection methods. 

 
Figure 4 displays the same information as Figure 3, but in terms of percentages. These 

percentages are calculated based on the number of features presented to the method, thus the 
percentages for the “After KW” method are based on the original number of features and the 
percentages for the Gini, Permutation, and Spoofed methods are based on the “After KW” 
number of features.  
 

The initial screening using the Kruskal-Wallis test cut the number of features from 473 to 333. 
As can be seen in the results figures, the method chose to keep a majority of the combination 
features, but selected a small percentage of the humidity, temperature and accelerometer 
features. It also selected less than half of the features from the neutron detector. This is because 
these modalities look similar for all classification levels; i.e., the natural background of neutrons, 
humidity, temperature, and vibration dominate most of the extracted features and any 
discernable difference due to facility operations will not significantly contribute to the feature 
values. However, the fact that it did not completely eliminate any modality indicates that there 
were some features of each modality that are able to inform the facility operations.  
 



 
Figure 4-Percentage of the features selected for each modality for the various feature 

selection methods. 

 
The first feature selection method applied was the permutation-based importance using the 

cforest function from the R package party [9]. This method results in an importance value for 
each feature. After plotting the values of the importance metric, it was determined that a cutoff 
of 0.0012 allowed for a natural separation between two groups of variables and resulted in 110 
features. The application of the Gini index was performed with the randomForest function in the 
R package by the same name [10]. The application of the Gini index also results in a score for 
each variable, so again the top 110 features were chosen.  
 

For the application of the Spoofed method to the TA-66 data, two courses, or ten days of 
“course day” observations were changed to have a label of “standard non-working operations”. 
The two courses for which the data were modified include an “Advanced Neutron NDA” course 
and a “Fundamentals of NDA” course. A random forest was fit to the spoofed data. Then, each of 
the 333 features values were permuted one at a time. After each permutation, the spoofed days 
were predicted, and prediction accuracy was computed based on the true, i.e., not spoofed, 
observation label. Any feature for which the prediction accuracy decreased as compared with the 
unpermuted values was selected. This resulted in selection 98 of the features.  
 

The results shown in Figure 3 and Figure 4 indicate the different feature modalities that the 
different feature selection methods favored. Neither the permutation nor the Gini methods 
chose any neutron features. The permutation method also did not choose any humidity or 
temperature features, and favored more of the combination features than the Gini method. The 
spoofed method was the only method that did not choose any of the badge reader features, but 
did select features from the neutron modality. This could be because the badge reader data is 
easily tricked and the neutron data is not, where the other features do not change with the 
mislabeled data.  



Despite minor details (e.g., training versus test error), the spoofed method is most analogous 
to the permutation method, where the main difference is the data on which the method was 
trained. Figure 4 shows that these two methods produce almost the opposite in terms of features 
selected, specifically in terms of the badge reader, neutron, humidity, and temperature 
modalities.  This implies that if the data is spoofed or correctly labeled can lead to a noticeably 
different mix of variables that are chosen as important. 

  
In a realistic safeguards application, we will not know whether the data has been spoofed or 

not.  However, the results in Figure 4 indicate that the selected features could be an indicator of 
spoofed data. If features and operator logs are received over time, and variable selection is 
performed sequentially, assuming that the status of the facility operations has remained 
relatively consistent, a large shift in feature importance could indicate the data has been 
tampered. In addition, the results of the spoofed feature selection methodology can be used as 
a design tool to indicate the data streams and modalities that can best inform when the data has 
been corrupted. This approach can be useful in a limited sensor deployment scenario or in the 
planning stages of safeguards measures implementation. 
 
Conclusions 

The data collected from the persistent sensors and the extracted features have been used 
to identify features that are important for the purpose of classifying facility operation mode. 
The ultimate goal of this analysis would be to identify drastic changes in facility cadence, 
implying that a change has occurred within the facility, leading to increased awareness of 
operations either by operators or inspectors.  

  
A natural question to ask is which feature importance methodology is ‘best’; however, the 

answer to this question is application specific. For example, although not presented here, but 
already in [11], the criterion of feature importance can be used to rank the sensor modalities 
with respect to the information they provide to characterize facility operations. We have 
presented a method of ranking variable importance based on those that answer a specific 
question, specifically, correctly predicting data that has been intentionally spoofed. This 
framework could be extended to answering other questions of interest, such as, which features 
are important for predicting only courses, or which features are important when the facility 
dramatically, but intentionally, modifies its typical cadence of activities, (e.g., in response to a 
pandemic). Choosing which feature importance method to use should be informed by the 
question of interest and on which method most accurately addresses that issue.  
 

For future work, we will further explore the features selected by the different methods, 
specifically examining which modalities compose the combination features.  In addition, the idea 
of spoofing has been demonstrated to rank the features, but we have not quantitively addressed 
the details of detecting spoofed data.   
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