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Abstract

In the context of nuclear disarmament, robust verification mechanisms
to assess the completeness of fissile material baseline declarations are lack-
ing. In the field of nuclear archaeology, the Isotope Ratio Method (IRM)
has been proposed as a way to use measurements of materials in the long-
lasting structures of shut-down reactors to infer the quantities of produced
plutonium. We propose a method of assessing the systematic uncertain-
ties associated with IRM, focusing on incomplete information relating
to the reactor operation as well as uncertainties in nuclear cross-section
data. We develop a model to reconstruct local plutonium production
from a measurement of Ti-48/Ti-49 given a set of input parameters re-
garding the assumed operation. The application of this reconstruction
model is demonstrated for a CANDU 6 pressurized heavy-water reactor
model. With two different estimates for input parameter uncertainties,
we use quasi-Monte Carlo methods to estimate the output uncertainty of
the model. The single value estimates of the local plutonium production
in the considered scenarios have an uncertainty of 4 to 11 %, which illus-
trates that initial uncertainty assessments can have a significant impact
on the output uncertainty. Statistical tolerance intervals are proposed to
interpret the uncertainty in a manner that is meaningful to verification
purposes.

1 Introduction

Nuclear armed states’ assessments of their own fissile material production his-
tories include significant uncertainties [1]. In the United States as of 2009, for
example, production records indicated that 2.4 tons of plutonium were produced
in addition to what was known to be in the inventory [2]. Decreasing these un-
certainties would cause immediate safety and security benefits for the state itself
and would, furthermore, be an essential condition for nuclear disarmament of
any nuclear armed state: baseline declarations of weapons-usable fissile mate-
rial inventories and the corresponding production histories will likely need to be
issued and independently verified [3].
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The Isotope Ratio Method (IRM) can be used to estimate the lifetime plu-
tonium production of shut-down reactors, and is therefore both a tool to reduce
uncertainties of past production estimates, and to verify fissile material baseline
declarations [4]. Should inspectors return to North Korea, for instance, there
would be interest in applying this method to the graphite-moderated reactor in
Yongbyon, which produces the North Korean plutonium [5], [6].

Specifically, IRM is based on assessing the neutron fluence Φ =
∫
φdt (where

φ is the neutron flux) using isotopic measurements of trace impurities in several
samples that underwent neutron activation, taken in various locations within or
very close to the core of shut-down reactors. This method has been developed for
graphite-moderated reactors, where samples from the graphite would be taken
(GIRM) [7], and has been proposed for heavy water reactors [8]. Elements with
relevant isotopes include boron, lithium, chlorine, calcium, titanium, chromium,
iron, nickel, zirconium, and lead [8].

A detailed understanding of the uncertainties of the plutonium estimates
resulting from the IRM is crucial, to assess whether IRM measurements are
consistent with what a state knows about the reactor’s plutonium production,
or what it declares to inspectors. A detailed quantitative uncertainty study for
GIRM has been conducted by Heasler et al. [9]. For a generic scenario, they
find an expected relative uncertainty of 1.62 %. The paper finds that by far the
largest contribution to the overall uncertainty stems from incomplete knowledge
of parameters related to the reactor design and its operational history1.

The analysis in [9] assumes that best-estimate values of the design and oper-
ational parameters can be obtained. It then takes some uncertainty around this
best estimate into account. We argue, however, that the knowledge in particular
on the operational history may in some cases be somewhat limited, such that a
reliable estimate of the operational parameters is hard or impossible to obtain.

We present a quasi-Monte Carlo based approach for assessing IRM uncer-
tainties on a case-by-case basis. Using extensive simulations we propagate sev-
eral different sources of uncertainty through the IRM algorithm to quantify the
uncertainty of a plutonium estimate.

2 Uncertainties of the Isotope Ratio Method

Deducing plutonium production of a reactor requires three steps. First, the
neutron fluence at a specific location in the reactor must be expressed as a
function of the measured isotopic ratio of samples at that location. According
to the depletion equation, this depends on the production and depletion paths
of the considered isotopes. It also depends on the corresponding one-group
reaction cross-sections, which depend on the neutron energy spectrum at that
location. This can be obtained from neutron transport simulations. Second,
the plutonium production at a specific location must be expressed as a function
of the local fluence estimate. For this, fuel burnup calculations are required,

1In Heasler et al., this design and operational uncertainty is referred to as the ”Reactor
Physics Error”.
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which require input parameters such as reactor power or discharge burnup.
Third, the global plutonium production of a reactor must be inferred from local
plutonium production. This requires full-core reactor simulations to obtain
spatial information.

With all of these three steps, various kinds of uncertainties and errors are
introduced, which all must be propagated through the calculation process to
obtain the final uncertainty on the plutonium estimate. In [10], possible sources
of the IRM uncertainties have been identified. They include nuclear data, design
and operational parameters of the reactor, model approximations and compu-
tational errors. In [9], the major contributions to the uncertainty on design
and operational history are in descending order: fuel pin radius, fuel temper-
ature, graphite density, equivalent boron concentration, graphite temperature
and specific power.

In this study, we address only the first two steps of the IRM. To perform the
sampling-based uncertainty quantification, we construct a computational model
to estimate the local plutonium production from a hypothetical isotopic ratio
measurement. This model is explained in the following section. The uncertainty
sources are implemented as input parameters of the model that can be varied
initially, but remain constant during a single execution.

To illustrate the method, we focus on two categories of input uncertainties:
operational parameters and nuclear cross-section data. We assume the reactor
and fuel design to be known, for instance from visual inspections. Regarding
the operational history, which we assume to be known to various degrees, we
focus on the influence of uncertainties in fuel burnup, reactor power and mod-
erator temperature. Nuclear cross-section data uncertainties are considered for
the intuitively most relevant nuclides. U-238 and Pu-239 are the prevalent
isotopes in the reactor fuel whose nuclear reactions account for the plutonium
production and removal rate. Therefore, we consider the uncertainties of the in-
duced fission (n,fis) and radiative neutron capture (n,γ) cross-sections of both
isotopes. When considering IRM specifically, the cross-sections of the indica-
tor elements are important. We demonstrate our method using Ti-48/Ti-49 as
indicator, since the ratio has been used in other studies and is considered to
be suitable for conducting nuclear archaeology on reactors with a high fluence.
Thus, the reaction cross-sections relevant to the development of these ratios
are also included in our parametrization of the input uncertainties. In general,
suitable isotopic ratios need to be identified carefully [11], before conducting a
comprehensive uncertainty analysis.

In the next section we explain our computational model, which takes a value
of Ti-48/Ti-49 as well as a set of input parameters and estimates the local
plutonium production for a given reactor model.

3 Local Plutonium Reconstruction Method

As explained previously, we focus on the first two steps of the IRM, i.e., lo-
cal fluence and plutonium estimates. Fig. 2 illustrates the logical steps of the
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reconstruction model. We use the validated continuous-energy Monte-Carlo re-
actor physics code SERPENT 2 [12] to simulate neutron transport and calculate
fuel depletion. The neutron transport simulation yields the neutron energy
spectrum φE and the fuel depletion calculation computes the plutonium pro-
duction. Since we limit ourselves to local plutonium reconstruction, we perform
infinite lattice simulations to represent a single fuel channel in the center of the
reactor. Fig. 1 shows the geometry of the generic CANDU 6 fuel channel, which
we implemented in SERPENT 2.

UO2

D2O CO2 Calandria
tube

Cladding
Pressure

tube

Lattice pitcha 28.6 cm
Pressure tube � 10.338 cm
Fuel element � 1.206 cm
Cladding thickness 0.92 cm
Elements per bundle 37
Fuel composition nat UO2

Cladding material Zircaloy 4b

Coolant D2O
Moderator material D2O
a The lattice pitch is the distance be-
tween fuel channels

b Zr–1.5%SN–0.2%Fe–0.1%Cr

Figure 1: Fuel channel of a generic CANDU 6 reactor. The permanent structures
interesting for nuclear archaeology are the pressure tube and the calandria tube.

The input parameter burnup determines the duration of one simulation,
which in our model acts as one batch of fuel being burned and subsequently
extracted to obtain plutonium. We refer to this as one production campaign.
During a simulation, the neutron energy spectrum φE,i is tallied for each burnup
step at the relevant location in the reactor geometry, i.e., where we expect to
measure an isotopic ratio. To derive neutron spectrum related quantities, i.e.,
neutron flux and neutron fluence, we use the time-averaged neutron spectrum
φE , which is computed by averaging over all burnup steps of a simulation.
Integrating over energy yields the average neutron flux φ and integrating over
time yields the neutron fluence Φ0 of a single batch. The produced plutonium
is obtained as a mass density by summing over the individual mass densities
of each plutonium isotope in the depleted fuel, plus isotopes of other elements
which decay into plutonium with an extremely short half-life, e.g., U-239 and
Np-239.

Our implementation of step one of the IRM, the evolution of the isotopic ra-
tio, i.e., Ti-48/Ti-49 , is expressed explicitly as a function fluence and respective
one-group cross-sections. The isotopic ratio is derived from the isotopic vector
of the indicator elements, which is given as:

~N(t) = exp(At) ~N(0). (1)
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Figure 2: The logical steps of the reconstruction method for local plutonium
production.

Here A is the transition matrix containing the respective one-group cross-
sections and the average neutron flux. We calculate one-group cross-sections

Σi =

∫
σiφ (E) dE∫
φ (E) dE

for the relevant nuclear reactions using energy-dependent cross-section data.
We use ENDF/B-VIII.0 [13] cross-section data obtained from the JANIS 4.0
database [14]. In Fig. 2 we highlight the dependence on fluence, as this quantity
will create the link to plutonium production.

Step two creates the relation between local fluence and plutonium produc-
tion. We define the plutonium per unit fluence for a single batch as:

p0 =
Pu

Φ0
.

To estimate long-term plutonium production, i.e. plutonium produced by mul-
tiple subsequent production campaigns, we assume that the reactor is operated
under near identical conditions for each batch. This produces the following
simplifications for the framework: the average neutron flux is constant the en-
tire time and the plutonium per unit fluence is constant. Thus, the long-term
plutonium production is calculated as:

Pu (t) = p0 φ t, (2)

since φ is constant, Φ = φ t and the above expression is equal to Pu(Φ) in Fig. 2.
Combining Equations 1 and 2, the isotopic vector is given as:

~N(Pu) = exp(A
Pu

p0φ
) ~N(0). (3)
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Finally, we obtain the desired isotopic ratios by dividing the respective com-
ponents of the vector and then seek the inverse, i.e. the plutonium production
corresponding to a specific isotopic ratio. We use the numerical tools in Python
to invert the relationship.

Thus, the computational framework describes the relationship between long-
term plutonium production in one fuel channel and an isotopic ratio measure-
ment, based on a computational reactor model and a set of operational pa-
rameters. Given an isotopic ratio value, the model returns an estimate for the
produced plutonium.

4 Uncertainty Quantification

To propagate uncertainty sources through the model we use quasi Monte Carlo
methods. That is, we parametrize the model in terms of uncertainty sources
and use quasi random sampling to select input parameter values from the mul-
tidimensional parameter space. The boundaries of the input parameter space
reflect the assessment of initial uncertainty. In Table 1 we present the two dif-
ferent input parameter spaces we use in this analysis for a generic CANDU 6
reactor. In addition to the range, the underlying distribution is determined,
which later affects the sampling algorithm. In the cases we present, the nuclear
cross-section uncertainties follow a normal distribution and the operational pa-
rameter uncertainties are uniformly distributed. The former is due to the nature
of the measurement and evaluation process of nuclear cross-section libraries, the
latter reflects our assessment that lack of information may require an equal con-
sideration of all possible values. With our selection of examples, we showcase
how the uncertainty assessment of each parameter can differ between cases and
that the impact on output uncertainty can be significant.

To create samples, we use the Sobol sequence generation algorithm explained
in [15] with the initialization numbers from [16]. This is a low-discrepancy se-
quence, the advantage of which is that it covers a multidimensional parameter
space evenly with a lower number of samples compared to pseudo-random sam-
pling algorithms. The Sobol sequence itself only generates uniformly distributed
values. To obtain samples of the normally distributed parameters mentioned
above, we first generate uniform samples for the entire parameter space with
the Sobol sequence and then transform the pertinent dimensions into a normal
distribution using the inverse cumulative distribution function of the normal
distribution.

To apply the reconstruction model, an isotope ratio value is required. Since
real measurement data is not available, we determine a range of reasonable val-
ues for Ti-48/Ti-49 , using separate simulations, and perform the reconstruction
for several values along that range. This estimation is based on an approxima-
tion of the total fluence in a CANDU reactor with a lifetime power production
of the Bruce 1 reactor in Canada.

To assess the output uncertainty of the model, 4000 sets of input parameters
are sampled and the model is evaluated for each one, i.e. for one isotope ratio
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Table 1: Estimated input parameter uncertainties

CANDU-1 (C-1) CANDU-2 (C-2)

Temperaturea/ K 343–353 333–363
Thermal power / MWt 2000–2500 1000–2500
Burnup / MW d kg−1 0.2–1.5 0.2–4.0
σ (n,γ)47Ti b ±3%c ±6%d

σ (n,γ)48Ti ±3% ±6%
σ (n,γ)49Ti ±3% ±6%
σ (n,fission) 238U ±1.2% ±2.4%
σ (n,γ) 238U ±1.3% ±2.6%
σ (n,fission) 239Pu ±1.4% ±2.8%
σ (n,γ) 239Pu ±4.3% ±8.6%
a Only the temperature of the moderator liquid (D2O) is varied.
b σ refers to the one-group cross section.
c Uncertainties are given as an interval of the one relative standard devi-
ation around the expected value.

d For CANDU-2 we doubled the relative standard deviation to showcase
the impact of larger overall uncertainties.

value, the reconstruction framework computes 4000 different plutonium values.
This process is repeated for each case. The basic characteristics of the result-
ing plutonium distribution, such as the sample mean and the sample standard
deviation, are easily calculated numerically. To characterize the distribution
in manner that is meaningful for nuclear archaeology, we propose statistical
tolerance intervals. The tolerance interval contains a certain proportion p of
the population with a confidence level γ and give upper and lower bounds on
the expected plutonium production, rather than a best estimate value. As the
distribution of plutonium values is not easily parametrized, we choose a non-
parametric approach using order statistics to calculate the intervals. Such an
approach is explained in [17]. The results are presented in the following section.

5 Results

In Fig. 3 we compare the two different cases of the CANDU reactor model. The
left graph in the figure shows that the assessment of input parameter uncertainty
affects the width of the tolerance interval: higher input uncertainty leads to
higher output uncertainty. It also shows that the mean value of the distribution
is affected by range of input parameters. The former reflects the precision of
the reconstruction; the latter pertains to its accuracy. While we do not make a
quantitative assessment of the accuracy, it nevertheless shows that both aspects
are influenced by the choice of input parameters. The right graph in the Fig. 3
indicates a negligible increase of relative uncertainty. The relative uncertainty
here is quantified as half the width of the tolerance interval relative to the
mean of the interval. For a 95% confidence interval, this relative half-width is
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approximately double the relative standard deviation.
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Figure 3: Reconstructed plutonium with the CANDU reactor model. The
shaded area indicates the 95% tolerance interval. The right graph displays half
the width of the interval relative to the interval mean. The range of titanium
ratios corresponds approximately to the expected lifetime of a CANDU power
reactor.

Since we perform infinite lattice simulations, the plutonium is quantified
in units of g cm−3. A rough estimate of the total plutonium amount can be
made by multiplying with the volume of the reactor fuel elements. This does
not take the inhomogeneity of the neutron flux into account and should only
be used as a rough approximation. Results scaled to the reactor volume are
shown explicitly for a selected ratio value in Tab. 2. The table shows a best
estimate with standard deviation and two different tolerance intervals. The
mean value and the standard deviation are useful quantities to describe any
distribution, however, the uncertainty quantified by the standard deviation is
often evaluated under the assumption that the quantity to be measured follows
a normal distribution. In Table 2, the parametric tolerance interval assumes the
plutonium values are normally distributed and is derived from the sample mean
and standard deviation. The non-parametric tolerance interval gives different
upper and lower bounds on the plutonium estimate. Since we assumed some
uniformly distributed input parameters, a non-normally distributed output is
to be expected, if the respective input parameters have a high impact on the
output. This effect highlights why a more thorough assessment of tolerance
limits, beyond those generally implied by a mean value and a standard deviation,
may be warranted, especially when the verification of declarations and (non-
)compliance with a treaty are at stake.
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Table 2: Estimate for plutonium from hypothetical ratio measurements. The
95% tolerance interval have a 95% confidence level. For illustration purposes
the plutonium densities are scaled by the entire reactor fuel volume.

Ratio Case Pu± σ Parametrica Non-parametric

10.1
C-1 548 ± 29(5%)kg 490–607 kg 495–607 kg
C-2 484 ± 55(11%)kg 374–595 kg 397–595 kg

4.2
C-1 3292 ± 177(5%)kg 2939–3645 kg 2971–3645 kg
C-2 2909 ± 332(11%)kg 2246–3572 kg 2386–3572 kg

1.3
C-1 12620 ± 686(5%)kg 11250–13990 kg 11370–14000 kg
C-2 11154 ± 1278(11%)kg 8603–13700 kg 9140–13700 kg

a Assuming normally distributed Pu values.

6 Conclusion

In this paper we have demonstrated a Monte-Carlo based approach to uncer-
tainty propagation for the Isotope Ratio Method. While we have used a specific
set of parameters to showcase the method, more parameters can be added to the
computational model to take other sources of uncertainty into account. Further-
more, we propose statistical tolerance intervals as a useful measure to quantify
the uncertainty, as they give a more robust statement about the expected plu-
tonium production. The different test cases demonstrate that the uncertainty
of a local plutonium production estimate is strongly dependent on the initial
assessment of input uncertainty. Going forward, we are using variance based
sensitivity analysis to study the relative impact of different input parameters
on the output uncertainty.
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ing uncertainties in nuclear archaeology,” in 59th Annual INMM meeting,
Baltimore, MD, 2018.

[11] J. de Troullioud de Lanversin, “ONIX: An open-source burnup code for
nuclear archaeology,” Ph.D. dissertation, Princeton University, Sep. 2019.

[12] J. Leppänen et al., “The serpent monte carlo code: Status, development
and applications in 2013,” Annals of Nuclear Energy, vol. 82, pp. 142–150,
2015.

[13] D. Brown et al., “ENDF/B-VIII.0: The 8th major release of the nuclear
reaction data library with CIELO-project cross sections, new standards
and thermal scattering data,” Nuclear Data Sheets, vol. 148, pp. 1–142,
Feb. 2018.

[14] N. Soppera, M. Bossant, and E. Dupont, “JANIS 4: An improved version
of the NEA java-based nuclear data information system,” Nuclear Data
Sheets, vol. 120, pp. 294–296, Jun. 2014.

[15] P. Bratley and B. L. Fox, “Algorithm 659: Implementing sobol’s quasiran-
dom sequence generator,” ACM Transactions on Mathematical Software
(TOMS), vol. 14, no. 1, pp. 88–100, 1988.

[16] S. Joe and F. Y. Kuo, “Constructing sobol sequences with better two-
dimensional projections,” SIAM Journal on Scientific Computing, vol. 30,
no. 5, pp. 2635–2654, 2008.

[17] K. Krishnamoorthy and T. Mathew, Statistical Tolerance Regions: The-
ory, Applications, and Computation. John Wiley & Sons, 2008.

10


	Introduction
	Uncertainties of the Isotope Ratio Method
	Local Plutonium Reconstruction Method
	Uncertainty Quantification
	Results
	Conclusion

