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Abstract 
 
Euratom Safeguards performs sets of conformity assessment activities in the form of 
accountancy and physical verifications in installations using nuclear material. The on-site 
inspection process makes extensive use of independent measurement systems to determine the 
flows, quantities or characteristics of nuclear material. The deployment of an increasing number 
of unattended systems associated with remote data transmission offers an opportunity to 
improve inspection effectiveness and efficiency by systematic data analysis. 
 
At present, dedicated IT applications are used to evaluate acquired measurement data. The 
results of their evaluations, being reported by individual inspection, are only representative of 
a situation over a limited period in time. However, Euratom Safeguards long-term strategy 
foresees an assessment of risk based on the results of past verification activities and the 
evaluation of confidence factors capturing limits and uncertainties encountered during the 
process. 
 
The evaluation of measurement data can directly support those two concepts by including, for 
instance, a deeper analysis of historical trends or an automated assessment of the measurement 
systems performances. To this end, the development of dedicated analysis packages associated 
with a centralised measurement data repository was initiated.   
   
The objective is to provide inspectors with data analysis tools that combine robust statistical 
techniques and time series analysis aimed to detect anomalous patterns in the measurements. 
The prompt detection of anomalies such as structural breaks or outliers together with a suitable 
visualisation of these patterns may indeed support the identification of discrepancies in 
inspections’ findings. In this paper, we describe an exploratory study of possible analysis tools 
applied to Non-Destructive Assay data designed to provide a solid basis for the development of 
a structured and sound statistical framework for the analysis of inspections’ results.  
 
  



1. Context  
 

The Euratom Treaty laid down the foundation for the peaceful use of nuclear materials and 
technologies in Member States of the European Union (EU MS). The Treaty established a 
nuclear material supervision system, known as “Euratom safeguards” to ensure the non-
diversion of nuclear material from their intended uses and compliance with safeguards 
obligations under international agreements. 
The European Commission Directorate ENER E (EC ENER E) is entrusted with the 
responsibility of administrating Euratom safeguards and implements associated supervision 
activities by a combination of material accountancy measures and physical verifications. 
On-site, Euratom inspectors verify a nuclear facility operator’s declarations related to the flows, 
quantities and characteristics of nuclear materials with independent findings, these being 
supported by the analysis of data generated by destructive analysis (DA), containment and 
surveillance systems and lastly data generated by non-destructive assays (NDA), which are the 
object of this paper.  
The NDA systems are either operated in attended mode or installed as unattended monitoring 
equipment. In some cases, NDA systems are coupled with remote data transmission, which 
offers advantages in terms of implementation of safeguards in nuclear facilities. It allows for a 
reduction of the level of intrusiveness in the facility operation while increasing the verification 
coverage, shifting part of the inspection effort from on-site activities to off-site data evaluation. 
 
2. Problem statement  

 
Inspectors typically evaluate NDA results on-site by means of dedicated algorithms running in 
parallel to the instrument acquisition software. The results of their evaluation, being reported 
by individual inspection, are only representative of a snapshot of a situation over a limited 
period of time. In addition, the raw data remain usually on-site and are unavailable for historical 
analysis or re-evaluation at Euratom Headquarters. Therefore, the conclusion drawn for an 
inspection tends to not take into consideration trend analysis or cross-cutting different sources 
of data. 
The possibility to perform statistical analysis, in an automated, structured and principled 
manner and possibly in connection with other existing data handling structures was a clear need 
identified by Euratom Safeguards inspectors. It will allow: 

- An analysis of the historical trends to complement the data evaluation, for example by 
definition of validation and decision thresholds based on past results. 

- A dynamic assessment of the performance of the measurement system, allowing for 
maintenance planning and reducing reaction times in case of failures. 

On the long term, these two concepts will contribute to an enhancement of the inspection 
approach. By combining the use of past verification results and the definition of levels of 
confidence capturing the uncertainties and limits encountered during the process, inspectors 
would be able to modulate future verification activities more efficiently.  
To respond to these needs, the EC ENER E started the implementation of a centralised 
repository of measurement data coupled with the statistical evaluation of historical results. The 
European Commission Joint Research Centre (EC JRC) is developing the approach to the 
statistical analysis based on anonymised datasets of real inspection data.  
 
The following Section presents a proposal for the statistical analysis approach. The analysis is 
based on two anonymised datasets of passive neutron coincidence measurements with different 
features:  



- Use case 1 contains measurement of Plutonium oxide cans with similar characteristics 
in both content and form. The measurements are taken in unattended mode in 
combination with a High Purity Germanium Detector to evaluate the isotopic 
composition of the items. 

- Use case 2 contains measurements of impure Plutonium bearings items. With respect to 
the previous use case, the impurities as well as the packaging of the material add 
inhomogeneity that affects the measurement uncertainty. The measurements are taken 
in attended mode during yearly inspection, thus a lower number of measurement points 
are available for the statistical analysis with respect to use case 1. 

Results are presented in terms of potential outliers meaning measurements evaluated as being 
not coherent with the operator declarations. These are reported along with the outliers identified 
by inspectors based on their classical evaluation approach to provide a validation of the method 
proposed. Finally, Section 4 describes modalities for embedding the method in the operation 
workflow of inspections as well as future applications of the statistical analysis.   
 
3. The analytical approach 

 
This Section describes the analytical approach based on 3-steps for the analysis of NDA data. 
The goal is to provide inspectors with data analysis tools aimed at detecting anomalous patterns 
in NDA measurements, also in relation to the operator’s declaration. Considering a simulated 
sequence 𝑌𝑌1, … ,𝑌𝑌𝑁𝑁 of values for a generic variable 𝑌𝑌, Figure 1 shows examples of the 
anomalous patterns we pursue to identify. A level shift is a “jump” in the average level of the 
historical values of a measured variable. An outlier, instead, is a single observation not in line 
with the rest of the data. The prompt detection of such anomalies together with a suitable 
visualisation of these patterns may support the identification of discrepancies in inspections’ 
findings. Further, if required, it enables corrective actions early on in the verification process 
of nuclear materials.  
The analytical procedure is iterative in nature. When a new set of NDA measurements is 
available (i.e. at the end of an inspection period), the proposed 3-steps approach will make use 
of past and current data concerning: (i) the Assayed Mass; (ii) the uncertainty of the Assayed 
Mass obtained through propagation of uncertainties due to counting statistics and calibration 
parameters (also known as bottom-up approach); and (iii) the Declared Mass. 
It is important to remark that, even if the values of NDA measures have a temporal order, they 
are not analysed as time series because the time interval between measures is not constant. The 
quantitative methods proposed hereafter are based on time series analysis procedures with 
adaptations to the particular context. Moreover, the possible presence of outliers in the data 
requires the adoption of “robust” statistical methods, i.e. methods that allow obtaining estimates 
that are not affected by anomalous observations (the outliers) or other deviations from model 
assumptions. For a detailed and comprehensive description of robust statistics, see (inter alia) 
Maronna et al. (2019). 
In the following Sections, we describe the rationale and the expected outcome of each step. 
They represent an exploratory study of possible analytical tools applied to NDA data designed 
to provide a solid basis for the development of a structured and sound statistical framework for 
the analysis of inspections’ outcomes. 
 



 
Figure 1. Examples of the anomalous patterns that the presented approach aims to identify. 

 
3.1. Step 1: Analysis of the ratio between the assayed mass and its uncertainty 
 
The first variable of interest is the ratio between the Assayed Mass and its uncertainty obtained 
through a bottom-up approach. The assumption is that the proportion between the uncertainty 
and the measure is approximately constant over time. This means that the historical evolution 
of the ratios between each measure and its corresponding uncertainty should lie approximately 
on a line parallel to the x-axis, representing the average level of the ratios. In this context, an 
outlier is an Assayed Mass whose uncertainty is not coherent with the rest of measurements 
while a level shift is a structural break in the relation between the measured mass and its 
uncertainty. 
In this step of the analysis, we assume that: 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈
𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈𝑈𝑈𝑈𝑈𝐴𝐴 𝑀𝑀𝑈𝑈𝐴𝐴𝐴𝐴

 ~ 𝑈𝑈𝑐𝑐𝑈𝑈𝐴𝐴𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 →  
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈
𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈𝑈𝑈𝑈𝑈𝐴𝐴 𝑀𝑀𝑈𝑈𝐴𝐴𝐴𝐴

= 𝛼𝛼 ± 𝜀𝜀 

Where 𝛼𝛼 represents the average level of the ratios, and 𝜀𝜀 is the error term. Therefore, when a 
new set of measurements is available, the first step of the statistical analysis estimates the 
parameters in the previous expression in a robust way to identify potential outliers and level 
shifts. The method adopted for the estimation is based on the robust monitoring of time series 
described in Rousseeuw et al. (2019). Even if conceived for time series analysis, this method 
can be easily adapted to this context. Involving only the Assayed Mass and its associated 
uncertainty obtained through a bottom-up approach, the outcome of this step provides an 
additional validation criterion for the measurement. 
Figure 2 shows an example of the outcome of applying this step on use case 1 (Plutonium oxide 
cans measured in unattended mode). The analysis identifies several potential outliers, 
highlighted with red crosses, and a significant level shift in the average pattern of the measures.  
A closer look at the instrument performance revealed that in the month of May 2016 the 
operator modified a parameter in the measurement sequence without notification and the 
parameters of the algorithm triggering the data acquisition were not able to handle correctly the 
changes.  
The impact of this modification led to a slightly higher estimation of the uncertainty of the 
assayed mass from 1.10% to 1.30% on average (one relative standard deviation, expressed in 



percentage). At that time, as the acceptance criteria were based on a combination of validation 
parameters and a difference between the declared mass and the assayed mass justified by its 
measurement uncertainty, this issue remained undetected during the subsequent evaluations. 
Therefore, the statistical analysis proves to be able to detect changes in the measurement 
conditions that might otherwise get unnoticed, providing a timely indication for inspectors and 
technicians to plan for any remedial actions (i.e. an instrument’s maintenance operation).   

 
Figure 2. Example of the outcome of the first step of the analysis on use case 1 (Pu oxide cans 
measured in unattended mode). The level shift indicates a structural break in the relation 
between the measured mass and its uncertainty, while the red crosses represent potential outliers 
(i.e. assayed masses whose uncertainties are not coherent with the rest of measurements).  

The assumption of a constant relation between mass and uncertainty for a given instrument does 
not always reflect the reality of the measurement conditions. This is even truer when an 
instrument is used to measure a wide range of masses. In this case, the uncertainty is affected 
by the mass for both the counting statistics (higher masses generally produce higher count 
rates), and for the calibration parameters. This results in a higher dispersion of the points around 
the average value 𝛼𝛼 and a higher error term 𝜀𝜀 which, in turn, leads to a less accurate definition 
of outliers and more potential missed ‘alarms’ (false negatives). Nevertheless, the advantage of 
the proposed approach is that it can be applied in the exact same way for any type of 
measurement or instrument, making it a robust and consistent approach for any safeguards 
measures. On the contrary, the adaptation of the approach for any individual function 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈
𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈𝑈𝑈𝑈𝑈𝐴𝐴 𝑀𝑀𝑈𝑈𝐴𝐴𝐴𝐴

 ~ 𝑓𝑓(𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈𝑈𝑈𝑈𝑈𝐴𝐴 𝑀𝑀𝑈𝑈𝐴𝐴𝐴𝐴) ± 𝜀𝜀 

would not only complicate the approach, but also make it extremely sensitive to changes in the 
measurement conditions and thus subject to frequent adjustments.  
 
 
 
 
 
 



3.2. Step 2: Identification of systematic bias and outliers in the sequence of relative 
Operator-Inspector differences  
 
The second variable of interest is the relative Operator-Inspector Difference, defined as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝐴𝐴𝐴𝐴𝐴𝐴𝑈𝑈𝑈𝑈𝑈𝑈𝐴𝐴 𝑀𝑀𝑈𝑈𝐴𝐴𝐴𝐴 − 𝑅𝑅𝑈𝑈𝑈𝑈𝐷𝐷𝑈𝑈𝑈𝑈𝑈𝑈𝐴𝐴 𝑀𝑀𝑈𝑈𝐴𝐴𝐴𝐴

𝑅𝑅𝑈𝑈𝑈𝑈𝐷𝐷𝑈𝑈𝑈𝑈𝑈𝑈𝐴𝐴 𝑀𝑀𝑈𝑈𝐴𝐴𝐴𝐴
 

This variable is also expected to be approximately constant over time, that is: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝛽𝛽 ± 𝜖𝜖 
where 𝛽𝛽 represents the average level of the ROIDs, and 𝜖𝜖 is the error term. This expression 
being very similar to the one introduced in the previous Section, it will be analysed through the 
same statistical approach. In addition to the identification of potential outliers and level shifts, 
in this case we are also interested in a careful assessment of the coefficient 𝛽𝛽. This represents 
the average relative distance between the operator and inspector measurements. An estimate of 
𝛽𝛽 significantly different from zero suggests there is systematic deviation between the two 
measures.  
Figure 3 refers to use case 2 (impure Pu items measured in attended mode) where the estimate 
of 𝛽𝛽 appears to be not statistically different from zero. Figure 4 shows an example obtained 
with use case 1 (Pu oxide cans measured in unattended mode) where a systematic bias between 
the operator and the inspector measurements is visible. Finally, Figure 5 presents an additional 
example from use case 1 where the bias, in addition to being systematic, also increases 
significantly over time. In all three cases, several potential outliers are identified.  

 
Figure 3. Example of the outcome of the second step of the analysis on use case 2 (impure Pu 
items measured in attended mode). The estimate of 𝛽𝛽 represents the average value of the 
Relative Operator-Inspector Difference (ROID) expressed in percentage that appears to be not 
statistically different from zero. The red crosses indicate potential outliers whose ROIDs are 
not coherent with the rest of the measurements.  

The presence of a systematic bias between the verification measurements and the operator 
declarations is undesirable, but sometimes it is quite unavoidable. For example, in an 
unattended measurement station it can be due to an erroneous background measured when the 
nuclear material bearing item is too close to the instrument. The bias could be reduced by a 



change in the measurement sequence, but that may be very difficult to implement for the 
operator. In such cases, once the bias is recognised, understood and accepted, it is important to 
take it into account in the following evaluation of the measurement.  
 

 
Figure 4. Example of the outcome of the second step of the analysis on use case 1 (Pu oxide 
cans measured in unattended mode). The y-axis represents the Relative Operator-Inspector 
Difference (ROID) expressed in percentage. Here a systematic bias between the operator and 
the inspector measurements is visible. The red crosses indicate potential outliers. 

 
Figure 5. Example of the outcome of the second step of the analysis on use case 1 (Pu oxide 
cans measured in unattended mode). The y-axis represents the Relative Operator-Inspector 
Difference (ROID) expressed in percentage. Here the bias is different from zero and also 
presents a level shift. The red crosses indicate potential outliers. 

 



3.3. Step 3: Direct comparison of the Assayed and the Declared Mass of each item 
 
Once the coherence of the uncertainty estimation is analysed (first step) and any systematic 
biases are identified (second step), the Assayed and Declared Masses are compared in the third 
step to verify if they are statistically different or not. 
Assuming that in the previous step no systematic bias was detected (i.e. 𝛽𝛽 = 0), if the Assayed 
Mass 𝐴𝐴𝑀𝑀𝑖𝑖 and the Declared Mass 𝑅𝑅𝑀𝑀𝑖𝑖 of an item 𝑈𝑈 are not statistically different we have: 

𝐸𝐸(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖) = 𝐸𝐸(𝑅𝑅𝑀𝑀𝑖𝑖 − 𝐴𝐴𝑀𝑀𝑖𝑖) = 0           𝑉𝑉𝑈𝑈𝑈𝑈(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖) = 𝑉𝑉𝑈𝑈𝑈𝑈(𝑅𝑅𝑀𝑀𝑖𝑖 − 𝐴𝐴𝑀𝑀𝑖𝑖) = 𝜎𝜎𝑖𝑖,𝐷𝐷𝐷𝐷2 + 𝜎𝜎𝑖𝑖,𝐴𝐴𝐷𝐷2  

where 𝑅𝑅𝑅𝑅𝑅𝑅 is for Operator-Inspector Difference. The variance of 𝐴𝐴𝑀𝑀𝑖𝑖 is given by the bottom-
up estimation of the uncertainty, whereas the variance of 𝑅𝑅𝑀𝑀𝑖𝑖 is unknown. The International 
Target Values (ITV) provide cut-off values 𝜂𝜂𝐼𝐼𝐼𝐼𝐼𝐼 such that 𝜎𝜎𝑖𝑖,𝐷𝐷𝐷𝐷 ≤ 𝜂𝜂𝐼𝐼𝐼𝐼𝐼𝐼  × 𝑅𝑅𝑀𝑀𝑖𝑖. Therefore, the 
cut-off multiplied by 𝑅𝑅𝑀𝑀𝑖𝑖 represents the maximum value of the uncertainty of the Declared 
Mass. Along the same line, we can define:  

𝜎𝜎𝑖𝑖,𝐷𝐷𝐷𝐷2 = 𝜂𝜂𝑖𝑖2 × 𝑅𝑅𝑀𝑀𝑖𝑖
2 

and obtain: 

𝑉𝑉𝑈𝑈𝑈𝑈(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖) = 𝜂𝜂𝑖𝑖2𝑅𝑅𝑀𝑀𝑖𝑖
2 + 𝜎𝜎𝑖𝑖,𝐴𝐴𝐷𝐷2  

If we base the identification of outliers on the classical 𝑘𝑘𝜎𝜎 rule, where the value of k depends 
on the desired significance level for identifying an outlier, then an 𝑅𝑅𝑅𝑅𝑅𝑅 is an outlier if the 
distance from its expected value is larger (in absolute value) than 𝑘𝑘 times its standard error. 
Therefore an 𝑅𝑅𝑅𝑅𝑅𝑅 is NOT an outlier if: 

|𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝐸𝐸(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖)| ≤ 𝑘𝑘 × 𝜎𝜎𝑂𝑂𝐼𝐼𝐷𝐷𝑖𝑖  

that, considering the previous expression for the variance of 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖, becomes: 

|𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝐸𝐸(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖)| ≤ 𝑘𝑘�𝜂𝜂𝑖𝑖2𝑅𝑅𝑀𝑀𝑖𝑖
2 + 𝜎𝜎𝑖𝑖,𝐴𝐴𝐷𝐷2 . 

This condition is satisfied whenever 

𝜂𝜂𝑖𝑖 ≥
1

𝑘𝑘𝐷𝐷𝐷𝐷𝑖𝑖
�(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑘𝑘𝜎𝜎𝑖𝑖,𝐴𝐴𝐷𝐷)(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑘𝑘𝜎𝜎𝑖𝑖,𝐴𝐴𝐷𝐷). 

Therefore, the Operator-Inspector Difference of an item 𝑈𝑈 is NOT an outlier whenever the ratio 
between the uncertainty and the value of Declared Mass (represented by 𝜂𝜂𝑖𝑖) is above a value 
�̂�𝜂𝑖𝑖, given by: 

�̂�𝜂𝑖𝑖 = 1
𝑘𝑘𝐷𝐷𝐷𝐷𝑖𝑖

�(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑘𝑘𝜎𝜎𝑖𝑖,𝐴𝐴𝐷𝐷)(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑘𝑘𝜎𝜎𝑖𝑖,𝐴𝐴𝐷𝐷). 

The higher the value of �̂�𝜂𝑖𝑖, the higher the probability that 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 is an outlier. If the value under 
the squared root is negative, there is no statistical evidence to identify 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 as an outlier, 
according to the chosen outlier definition strategy. Moreover, we can directly compare �̂�𝜂𝑖𝑖 with 
the ITV cut-off 𝜂𝜂𝐼𝐼𝐼𝐼𝐼𝐼. This yields to more interpretable results, and simplifies the detection of 
suspiciously high values of �̂�𝜂𝑖𝑖. In particular we can distinguish 3 cases: 

1. �̂�𝜂𝑖𝑖 = 0 (because the value under the square root is smaller than 0): no statistical evidence 
of anomaly; 

2. 0 < �̂�𝜂𝑖𝑖 ≤ 𝜂𝜂𝐼𝐼𝐼𝐼𝐼𝐼: in this case we need to identify which values of �̂�𝜂𝑖𝑖 are suspiciously high. 
However, the assessment of the magnitude of �̂�𝜂𝑖𝑖 should be easily defined, given its direct 
connection with 𝜂𝜂𝐼𝐼𝐼𝐼𝐼𝐼. 



3. �̂�𝜂𝑖𝑖 > 𝜂𝜂𝐼𝐼𝐼𝐼𝐼𝐼: the Assayed and the Declared Mass are statistically different, we are in 
presence of an outlier. 

Finally, we started this section by assuming that in the analysis of step 3.2 no systematic bias 
was detected (i.e. 𝛽𝛽 = 0). If this is not the case, then we have that: 

𝐸𝐸(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖) = 𝐸𝐸(𝑅𝑅𝑀𝑀𝑖𝑖 − 𝐴𝐴𝑀𝑀𝑖𝑖) = 𝛽𝛽𝑅𝑅𝑀𝑀𝑖𝑖            𝑉𝑉𝑈𝑈𝑈𝑈(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖) = 𝑉𝑉𝑈𝑈𝑈𝑈(𝑅𝑅𝑀𝑀𝑖𝑖 − 𝐴𝐴𝑀𝑀𝑖𝑖) = 𝜎𝜎𝑖𝑖,𝐷𝐷𝐷𝐷2 + 𝜎𝜎𝑖𝑖,𝐴𝐴𝐷𝐷2 . 

Therefore the 𝑅𝑅𝑅𝑅𝑅𝑅 is NOT an outlier if: 

|𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝛽𝛽𝑅𝑅𝑀𝑀𝑖𝑖| ≤ 𝑘𝑘�𝜂𝜂𝑖𝑖2𝑅𝑅𝑀𝑀𝑖𝑖
2 + 𝜎𝜎𝑖𝑖,𝐴𝐴𝐷𝐷2  

that leads to the following expression for the threshold: 

�̂�𝜂𝑖𝑖 = 1
𝑘𝑘𝐷𝐷𝐷𝐷𝑖𝑖

�(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝛽𝛽𝑅𝑅𝑀𝑀𝑖𝑖 − 𝑘𝑘𝜎𝜎𝑖𝑖,𝐴𝐴𝐷𝐷)(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝛽𝛽𝑅𝑅𝑀𝑀𝑖𝑖 + 𝑘𝑘𝜎𝜎𝑖𝑖,𝐴𝐴𝐷𝐷). 

 
Figure 6. Example of the outcome of the third step of the analysis on use case 2 (impure Pu 
items measured in attended mode). The y-axis represent the variable η�i, a new evaluation 
parameter based on the ratio between the uncertainty and the value of Declared Mass. The value 
ηITV define the threshold between suspiciously high values of η�i and obvious outliers, whereas 
ηT discriminates the “safe” values of η�i from the ones that may raise an alarm. At the end of 
the analysis, the measurements identified as outliers are reported by their measurement ID 
number, allowing inspectors for a quick graphical overview of the anomalous measurements.  

Figure 6 presents an example from use case 2 (impure Pu items measured in attended mode) of 
the application of this new threshold. The values of 𝜂𝜂𝐼𝐼𝐼𝐼𝐼𝐼 and 𝜂𝜂𝐼𝐼, that divide the plot into three 
sub-regions, are purely descriptive, in order to demonstrate how the outcome of this approach 
may be interpreted. The former define the border between suspiciously high values of �̂�𝜂𝑖𝑖 and 
obvious outliers, whereas the latter discriminates the “safe” values of �̂�𝜂𝑖𝑖 from the ones that may 
raise an alarm. This particular case is an interesting example as the items were shipped between 
two facilities and measured at both the shipper and the receiver with different instruments. A 
cross check between the results at both ends led to a confirmation that measurements number 
41, 46, 33 and 36 were inconsistent with the declarations and that the corresponding OIDs were 
actually outliers.  
 



4. Discussion and future work  
 

The paper presents a proposal for a statistical analysis aimed at identifying trends in historical 
NDA measurements data. The proposal was recently presented to Euratom Safeguards 
inspectors and NDA technicians receiving positive comments. Specifically, inspectors 
recognised that the statistical analysis would complement the evaluation of data by calculation 
of acceptance criteria based on historical results, while NDA technicians found it a useful tool 
for monitoring equipment performance over time, planning maintenance intervention 
accordingly and timely detecting equipment failures.   
However, further analysis is required with larger sets of representative inspection’s 
measurements to finalise the statistical approach. There is a variety of NDA systems deployed 
in field, each with its own specificities, some are even uniquely custom made for a single 
application, and the statistical analysis needs to be able at the same time to adapt to 
measurement specificities while applying a consistent approach throughout material balance 
areas, installations and even throughout countries.  
In order to accomplish this task to the best possible extent, the practical implementation of the 
tool foresees to couple the statistical analysis with additional validation criteria based on a set 
of parameters defined a-priori that take into account the very detailed feature of each NDA 
instrumentation. This would add another layer of confidence in instrument performance that 
would timely alert the inspectors in their evaluation of the verification measurement. Moreover, 
the validation criteria would prevent the loading of erroneous results in the statistical analysis 
(for example, results containing clerical errors in the definition of the measurement parameters, 
some of which are easily overlooked during intense inspection activities). This, coupled with 
the application of a robust statistical method described earlier, is a further assurance that the 
evaluation criteria derived by the approach proposed will likely not be affected by anomalous 
observation.  
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