Validation of CFD-Methods to Predict Heat Transfer and Temperatures during the Transport and Storage of Casks under a Cover

Year
2004
Author(s)
André Leber - WTI Wissenschaftlich-Technische-Ingenieurberatung GmbH
Wilhelm Graff - GNS Gesellschaft fur Nuklear-Service mbH
Roland Hüggenberg - GNB Gesellschaft für Nuklear-Behälter mbH
File Attachment
Abstract
With respect to the transport of casks for radioactive material, the proof of the safe heat removal can be accomplished by validated calculation methods. The boundary conditions for thermal tests for type B packages are specified in the ADR based on the regulations defined by the International Atomic Energy Agency. The varying boundary conditions under transport or storage conditions are based on the varying thermal conditions true for different cask types. In most cases the cask will be transported in lying position under a cover (e.g. canopy or tarpaulin) and stored in standing position in an array with other casks. The main heat transport mechanisms are natural convection and thermal radiation. The cover or the storage building are furnished with vents that create an air flow, which will improve the natural convection. Depending on the thermal boundary conditions, the cask design and the heat power, about 50 - 95 % of the heat power will be removed from the finned cask surface by natural convection. Consequently the convection by air flow is the main heat transport mechanism. The air flow can be approximated with analytical methods by solving the integral heat and flow balances for the domain. In a stationary state the overpressure due the buoyancy and the pressure loss in the flow resistances are equal. Based on the air flow, the relevant temperatures of the cask can be calculated in an iterative process. Due to the fast development of numerical calculation methods and computer hardware, the use of ComputationalFluid-Dynamics(CFD) calculations plays an important role. CFD-calculations are based on solving the equations of conservation (Navier-Stokes equations) using a finite element mesh or a finite volume mesh of the model. For a finned cask lying under a cover, where the main contributing element for heat removal is natural convection in combination with the thermal radiation, a CFD-calculation can be the most appropriate method. Common CFD-Codes are FLUENT or CFX using finite-volume solvers or ANSYS-FLOTRAN using finite-element solvers. The correct functioning of these codes is globally tested over a bread rage of industrial flow problems. The weakly forced natural convection coupled with convective and radiative heat transfer at a finned surface is a very special use of CFD, so that the numerical methods by using CFD have to be validated in detail for these applications.